
To obtain RA, Dec & φ for all the three
cameras (Scanning Sky Monitor) aboard
ASTROSAT from the Satellite Attitude

Information

Sushila Mishra

under the guidance of Dipankar Bhattacharya
Astronomy & Astrophysics Group, Raman Research Institute, Bangalore 560 080

(Sept 2005)



Abstract

RA, Dec & φ for all the three cameras (SSM) is obtained from the ASTROSAT Attitude
Information i.e. the star sensor data, gyro data and resolver data. Star sensors is one of the
most accurate means of attitude determination. From the star sensor data using quaternion
transformation RA and Dec of the boom axis is obtained. From the given quaternions and
resolver data, φB of the boom axis is obtained. The coordinates of the other two axes i.e.
the common center coordinates of the slanted cameras is obtained from RA, Dec and φB of
the boom axis.



1 Introduction

The present day star sensors provide information known as quaternion. This is a four parameter
set used to describe the orientation of one reference frame with respect to a second reference
frame. Although only three parameters are needed to uniquely specify the relative orientation,
all three parameter sets have singularities which make them unsuitable for numerical simula-
tions, or integration in flight software.

The quaternion is represented by a four row-vector
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The first notation is the standard used in software. No distinction is made between the four
elements of the quaternion since numerically there is none. Ocassionally authors will make the
first element q0 and the remainder [q1 q2 q3] to correspond to the scalar and vector notation.
The second notation breaks the quaternion into a scalar and 3-vector part. Letting the first term
be the “scalar” is arbitrary.

The third form relates to the theorem of Euler that any arbitrary rotation about any number
of axes can be reduced to a single rotation about a fixed axis. If the rotation angle is defined as
φ and the axis of rotation is ~a, then the sign of the first value is arbitrary since any rotation can
be represented by two quaternions of opposite sign. Here we define φ to be in a right handed
corkscrew sense along the axis of rotation. In this text, the first element of the quaternion will
always be positive. This would imply that φ will always be between ±180◦. The transpose of a
quaternion is defined as
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with the property that
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Introduction to quaternions taken from Princeton Satellite Simulator document, chapter 10 on
coordinate transformations, section 10.3.2 (refer [1]).
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1.1 Quaternion multiplication

Just as one can multiply two rotation matrices to get another rotation matrix, one can multiply
quaternions to compute the effect of a series of rotations. Like matrix multiplication, quaternion
multiplication is not commutative because the order of rotation matters.

Let’s define three quaternions to have elements q, l, and r :
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To compute the quaternion product q = l × r, use the following algorithm :
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The above algorithm uses 16 multiplications and 12 additions. In comparison, it takes three
multiplications and two additions to compute each of the nine elements in a 3-D rotation matrix.
Thus, using quaternions saves 11 multiplications, six additions, and five assignment statements.
These savings mean that one can multiply quaternions in roughly half the time multiplying
rotation matrices takes (refer [2]).

1.2 Quaternion Transformations

Quaternions transform vectors by means of the following operation

xb = q∗baxaqba (6)

using quaternion multiplication with the vectors defined as quaternions with a zero scalar part :
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2 Star Sensor and Measurements

The functional meaning of the measurement as provided by the sensor is nothing but a trans-
formation between two co-ordinate systems. In star sensor case the information connects star
sensor frame to inertial frame. Similarly any transformation matrix can be represented by a 4
parameter q given by

q = {q1, q2, q3, q4} and with a constraint q2
1 + q2

2 + q2
3 + q2

4 = 1.0

Usually this information is given continuously, for example, every 400 ms or so; time vs q
which can be used to connect vector directions to inertial frame.

Physically this means a transformation matrix connecting the star sensor frame to Earth Cen-
tered Inertial Frame as given below. Thus the sensor frame is connected to inertial frame by
this transformation matrix and therefore any direction in the spacecraft can be connected to the
inertial frame if we know the mounting angles of star sensor and other direction as well.
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Each row in the A matrix is nothing but direction cosines of that axis of sensor in inertial frame.
Incidentally, a co-ordinate frame is attached to a sensor and is called sensor frame. One of the
axis will be about the bore axis and this axis is important for astronomy satellite purposes. If the
bore axis of the star sensor is x-axis, then the first row provides the bore axis in inertial frame.
Similarly, for other axes. For ASTROSAT, y-axis may be the bore axis.

3 To convert from quaternions to RA (α) and Dec (δ)

Using quaternion transformations given as

xb = q∗baxaqba (9)

The quaternion rotates a vector from frame ’a’ to frame ’b’. To obtain the RA and Dec of the
boom axis, frame ’a’ corresponds to the star sensor coordinate and frame ’b’ corresponds to the
inertial frame. The unit vector ~xa [xa(1), xa(2), xa(3)] corresponds to the SSM boom axis in the
sensor frame, and ~xb[xb(1), xb(2), xb(3)] gives the same unit vector as seen in the inertial frame.
Where,
The vector ~xa is a function of θ1 and θ2 as shown in the figure 1 given as
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Figure 1: Any vector in space in terms of cartesian star sensor coordinates

Also, [xa(1)]2 + [xa(2)]2 + [xa(3)]2 = 1

q∗ba =
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a1, a2 and a3 are the components of the unit vector ~a in frame ’a’ around which a rotation by
angle φ connects the two frames ’a’ and ’b’. By definition, a2

1 + a2
2 + a2

3 = 1.
Substituting the values of equation 10, 11 and 12 in equation 9 and doing quaternion multipli-
cation yields the following

xb(1) = 0 (13)
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Figure 2: Vector ~A in space

xb(2) = sin θ1 cos θ2 sin2(φ/2)[a2
1 − a2

2 − a2
3] + sin θ1 cos θ2 cos2(φ/2)

+2a1a2 sin θ1 sin θ2 sin2(φ/2) + 2a1a3 cos θ1 sin2(φ/2)

−a2 cos θ1 sinφ + a3 sin θ1 sin θ2 sinφ (14)

xb(3) = sin θ1 sin θ2 sin2(φ/2)[−a2
1 + a2

2 − a2
3] + sin θ1 sin θ2 cos2(φ/2)

+2a1a2 sin θ1 cos θ2 sin2(φ/2) + 2a2a3 cos θ1 sin2(φ/2)

−a3 sin θ1 cos θ2 sinφ + a1 cos θ1 sinφ (15)

xb(4) = cos θ1 sin2(φ/2)[−a2
1 − a2

2 + a2
3] + cos θ1 cos2(φ/2)

+2a1a3 sin θ1 cos θ2 sin2(φ/2) + 2a2a3 sin θ1 sin θ2 sin2(φ/2)

+a2 sin θ1 cos θ2 sinφ − a1 sin θ1 sin θ2 sinφ (16)

We can now derive the RA (α) and Declination (δ) of a vector from its components in the inertial
frame. From figure 2 we can see that suffix ’I’ corresponds to inertial frame of reference where,
δ = 90◦ lies on ZI axis, α = 0, δ = 0 lies on XI axis and α = 90◦, δ = 0 lies on YI axis. If there is a
vector ~A in the space, then ~A in inertial frame is related to α and δ with the following equations

AxI = cos δ cosα

AyI = cos δ sinα

AzI = sin δ (17)
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Hence, xb is also represented as
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which imply

δ = sin−1[xb(4)] (19)

and

α = tan−1

[

xb(3)
xb(2)

]

(20)

Hence α and δ of the boom axis is obtained. A routine has been written to convert from quater-
nion to α and δ [refer code list 6.1, routine name ’qtoradec()’].

4 To derive the meridian angle of the Boom rotation

The angle between the meridian passing through the boom and the reference axis of the boom
camera is defined as the meridian angle of the boom rotation (φB). The φB of the boom axis
is obtained from quaternions and resolver data (φR, the boom rotation angle with respect to a
reference fixed to the satellite body). Let (αre f , δre f ) represent the inertial coordinates of the
reference point for the resolver with respect to which φR is measured. This reference point
would have mounting angles θ1re f and θ2re f in the star sensor frame. αre f and δre f for this
reference point can be obtained using the quaternion transformation to α and δ as mentioned in
the previous section, substituting the value of θ1re f and θ2re f in equation (10) in place of θ1 and
θ2 respectively. Solving equation (9) yields the value of αre f and δre f . From the resolver angle
(φR) and δre f , φB of the boom can then be obtained as follows

φB = φR + (90◦ − δre f ) (21)

5 To derive RA and Dec of the slanted cameras

The values of αB, δB and φB is used to obtain ra and dec of the slanted cameras. Let αs and δs

represents the common center coordinates of the slanted cameras and is obtained using spherical
transformations as follows

cos δs sin(αs − αB) = − sin θc sinφB (22)

cos δs cos(αs − αB) = cos θc cos δB − sin θc sin δB cosφB (23)

sin δs = cos θc sin δB + sin θc cos δB cosφB (24)
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where, θc is the canting angle. Refer figure 6 (Slanted Camera Frame) in the report [3].
Solving equation (22) and (23) yields αs

αs = αB + tan−1

[

− sin θc sinφB

cos θc cos δB − sin θc sin δB cos φB

]

(25)

and δs is obtained from equation (24) given as

δs = sin−1 [cos θc sin δB + sin θc cos δB cosφB
]

(26)

6 Code List

All the codes listed below is in machine moose.rri.local.net

6.1 /moose2/sushila/2July2005 fits/18Aug05/qtoradec.c

The function ’qtoradec.c’ converts from any given quaternion to RA(α) and dec(δ). The four
quaternion values, θ1 and θ2 is passed as input parameters to this routine and the function returns
α and δ.

6.2 /moose2/sushila/2July2005 fits/18Aug05/boomtoslant.c

The function ’boomtoslant.c’ evaluates slanted camera coordinate. The values of αB, δB and φB

is passed as input parameters to this function and it returns αs and δs i.e. the common center
coordinate of the slanted cameras.

6.3 /moose2/sushila/2July2005 fits/18Aug05/sim fits.c

To convert the simulation file to fits binary file. The code ’sim fits.c’ takes the simulation
filename (ascii file) as the command line argument and converts the ascii file to fits binary file.
The program also takes care of defining the various primary header into the fits binary file. For
example, the start and end quaternions values is defined in the header file (refer ‘prim header.h’)
which is provided by the star sensor data. These values is then define in the primary header of
the fits binary file. Then these values is read from the fits primary header and is passed to the
routine ’qtoradec()’ to calculate ra and dec. The values of ra and dec is stored into the primary
header of the fits binary file. Also, the routine ’boomtoslant()’ is called to convert from boom
coordiantes to common center coordinate of the slanted cameras.
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The fits primary header is listed below

SIMPLE = T / file does conform to FITS standard

BITPIX = 16 / number of bits per data pixel

NAXIS = 0 / number of data axes

EXTEND = T / FITS dataset may contain extensions

COMMENT FITS (Flexible Image Transport System) format is defined in ’Astronomy

COMMENT and Astrophysics’, volume 376, page 359; bibcode: 2001A&A...376..359H

DATE_OBS= 0. / Date of observation (calender date)

S_ST_OB = 0. / Start scan time (on-board clock)

E_ST_OB = 0. / End scan time (on-board clock)

S_ST_UT = 0. / Start scan time (UT)

E_ST_UT = 0. / End scan time (UT)

S_MJD = 0. / Start Modified Julian Date (MJD)

E_MJD = 0. / End Modified Julian Date (MJD)

P_LEVEL = 0 / Processing level (0, 1, 2, 3, ...)

OBS_MODE= 0 / Observation Mode (0=step & stare / 1=rotating)

START_Q1= 0.45677 / Start quaternion value1

START_Q2= 0.08912 / Start quaternion value2

START_Q3= 0.23456 / Start quaternion value3

START_Q4= 0.77345 / Start quaternion value4

S_RA_B = 100.356292609109 / Start RA Boom

S_DEC_B = 48.3303102812087 / Start DEC Boom

S_RESOLV= 20. / Start Resolver Angle

S_MERI_A= 91.7408368259634 / Start Meridian Angle

S_RA_SL = 65.7474727345672 / Start RA Slant Center Coordinate

S_DEC_SL= 41.948880985664 / Start DEC Slant Center Coordinate

END_Q1 = 0.03024 / End quaternion value1

END_Q2 = 0.40617 / End quaternion value2

END_Q3 = 0.05607 / End quaternion value3

END_Q4 = 0.45007 / End quaternion value4

E_RA_B = 11.7301062801922 / End RA Boom

E_DEC_B = 2.21112065922902 / End DEC Boom

E_RESOLV= 50. / End Resolver Angle

E_MERI_A= 138.07702031136 / End Meridian Angle

E_RA_SL = 354.628793079223 / End RA Slant Center Coordinate

E_DEC_SL= -16.2151705876558 / End DEC Slant Center Coordinate

GTI_FILE= ’sim_rt0.000_rp0.067_f1.0000_sx0.0_sy0.0_t0.00_p0.00.gti’

COMMENT GTI_FILE : Good Time Interval Filename

DATE = ’2005-09-09T06:10:09’ / file creation date (YYYY-MM-DDThh:mm:ss UT)

END

This primary header is at a very basic level. More fits keywords will be added into it later.
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