Locating noise-dominated data in quadrant 0 : Time totcounts fraction : 433350245.0 2017 0.891 : 433350246.0 2456 0.882 : 433350250.0 2061 0.822 : 433350279.0 2888 0.885 : 433350284.0 2405 0.910 : 433350286.0 2058 0.828 : 433350287.0 2247 0.865 : 433350288.0 2344 0.896 : 433350296.0 2250 0.849 : 433350297.0 2127 0.915 : 433350298.0 2054 0.884 : 433350299.0 2415 0.874 : 433350304.0 2733 0.905 : 433350307.0 2543 0.867 : 433350314.0 2199 0.848 : 433350316.0 2577 0.879 : 433350317.0 2452 0.894 : 433350320.0 2517 0.872 : 433350324.0 2453 0.848 : 433350327.0 2062 0.883 : 433350328.0 2365 0.845 : 433350336.0 2255 0.863 : 433350337.0 3100 0.903 : 433350394.0 2726 0.887 : 433350399.0 3012 0.911 : 433350451.0 2031 0.818 : 433350528.0 2835 0.968 : 433350556.0 2396 0.855 : 433350559.0 2848 0.888 : 433350560.0 2859 0.979 : 433350561.0 2670 0.985 : 433350565.0 2532 0.865 : 433350575.0 2492 0.879 : 433350657.0 2540 0.869 : 433350677.0 2288 0.844 : 433350690.0 2485 0.989 : 433350691.0 2734 0.970 : 433350694.0 2734 0.932 : 433350699.0 2461 0.874 : 433350852.0 3641 0.939 : 433350853.0 2689 0.924 : 433350967.0 2764 0.916 : 433350968.0 2071 0.901 : 433350997.0 2872 0.876 : 433351027.0 2043 0.833 : 433351031.0 3387 0.941 : 433351050.0 2770 0.895 : 433351055.0 2321 0.870 : 433351061.0 2907 0.878 : 433351062.0 2471 0.911 : 433351063.0 2115 0.923 : 433351064.0 2804 0.970 : 433351065.0 2823 0.988 : 433351082.0 2689 0.883 : 433351083.0 2228 0.902 : 433351084.0 2022 0.881 : 433351085.0 2303 0.885 : 433351086.0 2519 0.869 : 433351087.0 2466 0.919 : 433351089.0 2173 0.923 : 433351090.0 2585 0.887 : 433351091.0 2322 0.907 : 433351092.0 2338 0.901 : 433351093.0 2459 0.902 : 433351094.0 2354 0.916 : 433351095.0 2644 0.901 : 433351096.0 2208 0.892 : 433351097.0 2249 0.914 : 433351098.0 2487 0.924 : 433351100.0 2561 0.924 : 433351101.0 2411 0.919 : 433351102.0 2488 0.924 : 433351103.0 2552 0.922 : 433351104.0 2667 0.943 : 433351106.0 2668 0.939 : 433351107.0 2701 0.937 : 433351108.0 2433 0.931 : 433351109.0 2397 0.914 : 433351118.0 2082 0.851 : 433351286.0 2357 0.864 : 433351287.0 2244 0.839 : 433351294.0 3905 0.914 : 433351301.0 2618 0.898 : 433351302.0 2543 0.942 : 433351303.0 2377 0.979 : 433351308.0 3017 0.912 : 433351309.0 2737 0.981 : 433352025.0 3256 0.921 : 433352028.0 2054 0.815 : 433352030.0 3083 0.880 : 433352031.0 2015 0.905 : 433352032.0 2699 0.936 : 433352046.0 3019 0.973 : 433352059.0 2856 0.953 : 433352060.0 2761 0.982 : 433352061.0 2131 0.892 : 433352103.0 3482 0.949 : 433352122.0 3434 0.950 : 433352123.0 2728 0.967 : 433352124.0 2420 0.945 : 433352125.0 2309 0.910 : 433352149.0 2494 0.866 : 433352177.0 3230 0.926 : 433352216.0 2381 0.867 : 433352310.0 2175 0.835 : 433352311.0 2830 0.997 : 433352328.0 2818 0.898 : 433352378.0 2995 0.930 : 433352384.0 2059 0.843 : 433352385.0 3215 0.935 : 433352386.0 2184 0.901 : 433352388.0 2516 0.897 : 433352420.0 2718 0.905 : 433352421.0 2487 0.948 : 433352450.0 2346 0.867 : 433352454.0 2085 0.840 : 433352455.0 2168 0.833 : 433352456.0 2047 0.923 : 433352471.0 2747 0.873 : 433352553.0 2264 0.904 Total number of 1 second bins: 2421 Bins with >0 counts : 2421 Bins with >2000 counts : 120 120 of 120 high count rate bins were dominated by noise Noise dominated 4.96% of total time, 4.96% of detector on time (defined as non-zero counts) Locating noise-dominated data in quadrant 1 : Time totcounts fraction : 433350902.0 2516 0.886 : 433350910.0 2655 0.877 Total number of 1 second bins: 2421 Bins with >0 counts : 2421 Bins with >2000 counts : 2 2 of 2 high count rate bins were dominated by noise Noise dominated 0.08% of total time, 0.08% of detector on time (defined as non-zero counts) Locating noise-dominated data in quadrant 2 : Time totcounts fraction : 433351807.0 2321 0.855 : 433351808.0 2577 0.910 : 433352001.0 3696 0.965 : 433352006.0 3385 0.911 : 433352013.0 2027 0.831 : 433352014.0 2787 0.983 Total number of 1 second bins: 2421 Bins with >0 counts : 2421 Bins with >2000 counts : 6 6 of 6 high count rate bins were dominated by noise Noise dominated 0.25% of total time, 0.25% of detector on time (defined as non-zero counts) Locating noise-dominated data in quadrant 3 : Time totcounts fraction : 433350249.0 3470 0.945 : 433350250.0 2640 0.967 : 433350251.0 2643 0.987 : 433350252.0 2391 0.974 : 433350253.0 2714 0.976 : 433350254.0 2669 0.953 : 433350255.0 2556 0.955 : 433350256.0 2308 0.929 : 433350262.0 2719 0.879 : 433350263.0 2095 0.981 : 433350265.0 2682 0.881 : 433350282.0 2298 0.853 : 433350284.0 2183 0.871 : 433350293.0 2223 0.838 : 433350322.0 2095 0.867 : 433350327.0 2678 0.892 : 433350328.0 2538 0.941 : 433350330.0 2064 0.856 : 433350331.0 2331 0.862 : 433350344.0 2092 0.826 : 433350346.0 2277 0.839 : 433350348.0 2058 0.850 : 433350350.0 2421 0.856 : 433350351.0 2610 0.920 : 433350352.0 2655 0.957 : 433350414.0 2078 0.827 : 433350416.0 2116 0.847 : 433350417.0 2211 0.873 : 433350418.0 2089 0.921 : 433350419.0 2720 0.980 : 433350450.0 2066 0.848 : 433350591.0 2984 0.925 : 433350600.0 2492 0.889 : 433350610.0 2708 0.910 : 433350734.0 2438 0.893 : 433350735.0 2589 0.924 : 433350789.0 2568 0.875 : 433350965.0 2341 0.871 : 433350974.0 2812 0.922 : 433350976.0 3101 0.948 : 433350978.0 2294 0.839 : 433350980.0 2743 0.893 : 433350991.0 2092 0.843 : 433350992.0 2823 0.982 : 433350993.0 2413 0.927 : 433350994.0 2702 0.981 : 433350997.0 3841 0.953 : 433350998.0 2624 0.988 : 433350999.0 2414 0.894 : 433351002.0 3073 0.896 : 433351004.0 2459 0.871 : 433351006.0 2996 0.909 : 433351007.0 2476 1.000 : 433351011.0 2090 0.862 : 433351012.0 2505 0.875 : 433351013.0 2826 0.967 : 433351014.0 2192 0.904 : 433351016.0 2296 0.876 : 433351019.0 2691 0.946 : 433351020.0 2321 0.903 : 433351025.0 2005 0.870 : 433351029.0 2958 0.896 : 433351030.0 2329 0.907 : 433351034.0 2515 0.878 : 433351037.0 2033 0.845 : 433351054.0 2059 0.837 : 433351055.0 2381 0.868 : 433351056.0 2492 0.881 : 433351063.0 2360 0.835 : 433351065.0 2142 0.836 : 433351067.0 2352 0.850 : 433351071.0 2584 0.877 : 433351083.0 2306 0.870 : 433351087.0 2239 0.874 : 433351094.0 2571 0.885 : 433351104.0 2035 0.834 : 433351111.0 2690 0.889 : 433351113.0 2018 0.877 : 433351115.0 2347 0.878 : 433351118.0 3445 0.940 : 433351121.0 2105 0.851 : 433351122.0 2726 0.886 : 433351123.0 2841 0.960 : 433351124.0 2778 0.974 : 433351125.0 2773 0.981 : 433351126.0 2617 0.989 : 433351127.0 2936 0.992 : 433351128.0 2704 0.979 : 433351129.0 2055 0.892 : 433351136.0 3689 0.950 : 433351146.0 2165 0.862 : 433351148.0 2313 0.866 : 433351149.0 2196 0.873 : 433351150.0 2994 0.917 : 433351153.0 2574 0.927 : 433351154.0 2121 0.974 : 433351157.0 3231 0.948 : 433351158.0 2210 0.893 : 433351159.0 2204 0.896 : 433351160.0 2611 0.914 : 433351162.0 3144 0.917 : 433351164.0 3846 0.959 : 433351166.0 2526 0.861 : 433351168.0 4123 0.953 : 433351170.0 2936 0.922 : 433351171.0 2375 0.928 : 433351174.0 2245 0.853 : 433351175.0 2310 0.872 : 433351183.0 2288 0.839 : 433351186.0 3397 0.913 : 433351188.0 2423 0.849 : 433351197.0 2763 0.873 : 433351208.0 2065 0.862 : 433351209.0 2838 0.897 : 433351218.0 2867 0.901 : 433351219.0 2747 0.979 : 433351222.0 2302 0.853 : 433351225.0 2318 0.868 : 433351226.0 2735 0.930 : 433351227.0 2725 0.970 : 433351228.0 2380 0.919 : 433351229.0 2064 0.905 : 433351232.0 3098 0.935 : 433351233.0 2287 0.932 : 433351236.0 3079 0.924 : 433351237.0 2690 0.945 : 433351239.0 3419 0.974 : 433351246.0 2650 0.896 : 433351250.0 2045 0.850 : 433351254.0 3025 0.912 : 433351257.0 3302 0.928 : 433351258.0 2336 0.929 : 433351259.0 2326 0.932 : 433351261.0 2664 0.890 : 433351264.0 2026 0.849 : 433351265.0 2739 0.928 : 433351268.0 3680 0.945 : 433351285.0 2382 0.870 : 433351286.0 2313 0.866 : 433351287.0 2009 0.866 : 433351290.0 2118 0.860 : 433351309.0 2922 0.918 : 433351315.0 4063 0.977 : 433351316.0 2795 1.000 : 433351317.0 2840 0.990 : 433351333.0 2246 0.870 : 433351347.0 3892 0.948 : 433351348.0 2419 0.921 : 433351349.0 2487 0.928 : 433351350.0 2312 0.922 : 433351351.0 2956 0.953 : 433351352.0 2666 0.971 : 433351354.0 2461 0.976 : 433351355.0 2542 0.924 : 433351358.0 3722 0.930 : 433351359.0 2311 0.912 : 433351361.0 2346 0.912 : 433351362.0 2150 0.902 : 433351363.0 2643 0.967 : 433351364.0 2200 0.902 : 433351365.0 2724 0.952 : 433351381.0 3517 0.939 : 433351384.0 2375 0.873 : 433351450.0 2085 0.855 : 433351452.0 2054 0.831 : 433351477.0 2153 0.835 : 433351481.0 2250 0.869 : 433351487.0 2241 0.871 : 433351493.0 2017 0.858 : 433351495.0 2105 0.880 : 433351548.0 2977 0.907 : 433351549.0 2426 0.908 : 433351551.0 2287 0.898 : 433351552.0 2408 0.959 : 433351553.0 2550 0.937 : 433351554.0 2420 0.945 : 433351555.0 2235 0.905 : 433351557.0 2425 0.866 : 433351558.0 2601 0.927 : 433351562.0 2809 0.902 : 433351642.0 2430 0.885 : 433351643.0 2068 0.868 : 433351644.0 2640 0.950 : 433351647.0 2967 0.902 : 433351659.0 2850 0.914 : 433351661.0 2885 0.949 : 433351664.0 3544 0.917 : 433351665.0 2166 0.909 : 433351670.0 2184 0.837 : 433351671.0 2064 0.869 : 433351697.0 3110 0.915 : 433351698.0 2346 0.905 : 433351702.0 2761 0.902 : 433351703.0 2124 0.864 : 433351709.0 2421 0.881 : 433351714.0 2803 0.915 : 433351715.0 2129 0.937 : 433351716.0 2674 0.988 : 433351717.0 2478 0.910 : 433351718.0 2615 0.940 : 433351719.0 2282 0.910 : 433351720.0 2370 0.915 : 433351721.0 2438 0.991 : 433351722.0 2674 0.928 : 433351723.0 2342 0.905 : 433351729.0 2971 0.924 : 433351731.0 2278 0.856 : 433351734.0 2241 0.858 : 433351735.0 2568 0.918 : 433351736.0 2223 0.884 : 433351738.0 2270 0.947 : 433351740.0 2909 0.925 : 433351742.0 2660 0.882 : 433351744.0 2656 0.910 : 433351745.0 2849 0.905 : 433351750.0 3681 0.947 : 433351751.0 2438 0.953 : 433351752.0 2061 0.879 : 433351766.0 2059 0.849 : 433351772.0 2887 0.913 : 433351773.0 3066 0.938 : 433351786.0 2698 0.894 : 433351787.0 2667 0.895 : 433351793.0 2637 0.910 : 433351795.0 2382 0.873 : 433351796.0 2829 0.887 : 433351797.0 2381 0.900 : 433351798.0 2686 0.966 : 433351801.0 3045 0.895 : 433351802.0 2541 0.947 : 433351803.0 2634 0.965 : 433351804.0 2494 0.910 : 433351807.0 2574 0.892 : 433351808.0 2307 0.873 : 433351809.0 2448 0.876 : 433351810.0 2032 0.858 : 433351811.0 2021 0.850 : 433351812.0 2022 0.882 : 433351813.0 2398 0.874 : 433351815.0 3031 0.922 : 433351816.0 2261 0.967 : 433351818.0 2493 0.923 : 433351819.0 2546 0.968 : 433351820.0 2024 0.905 : 433351821.0 3237 0.930 : 433351823.0 2074 0.833 : 433351824.0 2935 0.912 : 433351825.0 2301 0.926 : 433351826.0 2345 0.935 : 433351827.0 2633 0.968 : 433351828.0 2385 0.964 : 433351830.0 2441 0.879 : 433351831.0 2953 0.980 : 433351832.0 2414 0.909 : 433351833.0 2848 0.954 : 433351840.0 2818 0.892 : 433351844.0 2852 0.908 : 433351848.0 2585 0.909 : 433351849.0 2467 0.938 : 433351850.0 2441 0.930 : 433351853.0 2442 0.871 : 433351854.0 2668 0.940 : 433351855.0 2174 0.924 : 433351856.0 2406 0.926 : 433351860.0 3287 0.922 : 433351861.0 2433 0.912 : 433351863.0 2582 0.937 : 433351891.0 2421 0.891 : 433351899.0 2893 0.915 : 433351909.0 2650 0.902 : 433351917.0 2924 0.907 : 433351918.0 3084 0.931 : 433351920.0 2264 0.853 : 433351922.0 2043 0.843 : 433351923.0 2356 0.887 : 433351928.0 2493 0.893 : 433351929.0 2017 0.847 : 433351930.0 2210 0.858 : 433351931.0 2047 0.861 : 433351932.0 2721 0.886 : 433351935.0 2033 0.848 : 433351936.0 2581 0.917 : 433351940.0 2252 0.864 : 433351941.0 3522 0.928 : 433351942.0 2407 0.912 : 433351944.0 2628 0.959 : 433351945.0 2506 0.965 : 433351948.0 2863 0.948 : 433351950.0 2745 0.969 : 433351953.0 3203 0.932 : 433351958.0 2118 0.847 : 433351959.0 2410 0.878 : 433351962.0 2091 0.876 : 433351963.0 2639 0.894 : 433351972.0 2073 0.875 : 433351973.0 2931 0.934 : 433351974.0 2276 0.898 : 433351975.0 2753 0.916 : 433351976.0 2587 0.919 : 433351978.0 2706 0.921 : 433351981.0 2348 0.894 : 433351982.0 3028 0.935 : 433351983.0 2132 0.930 : 433351986.0 3437 0.926 : 433351987.0 2423 0.942 : 433351988.0 2059 0.857 : 433351989.0 2641 0.916 : 433351990.0 2377 0.923 : 433351993.0 3125 0.931 : 433351997.0 2450 0.888 : 433351998.0 2025 0.846 : 433351999.0 2220 0.869 : 433352000.0 2887 0.918 : 433352001.0 2423 0.933 : 433352003.0 2289 0.889 : 433352006.0 2328 0.859 : 433352010.0 2817 0.905 : 433352012.0 3088 0.952 : 433352013.0 2552 0.929 : 433352014.0 2524 0.935 : 433352017.0 3073 0.955 : 433352018.0 2762 0.972 : 433352019.0 2686 0.948 : 433352020.0 2745 0.977 : 433352022.0 2370 0.881 : 433352023.0 2371 0.904 : 433352024.0 2172 0.887 : 433352025.0 2627 0.928 : 433352026.0 2632 0.958 : 433352027.0 2618 0.939 : 433352030.0 3602 0.962 : 433352034.0 2390 0.886 : 433352038.0 2387 0.914 : 433352039.0 2158 0.921 : 433352040.0 2298 0.923 : 433352042.0 2745 0.908 : 433352044.0 2542 0.882 : 433352045.0 2242 0.913 : 433352046.0 2293 0.875 : 433352047.0 2052 0.875 : 433352048.0 2196 0.860 : 433352049.0 2673 0.915 : 433352051.0 2778 0.929 : 433352052.0 2723 0.963 : 433352053.0 2306 0.892 : 433352054.0 2746 0.985 : 433352055.0 2171 0.923 : 433352058.0 3432 0.940 : 433352059.0 2587 0.977 : 433352061.0 3068 0.945 : 433352064.0 2729 0.895 : 433352066.0 2735 0.893 : 433352067.0 2460 0.937 : 433352068.0 2160 0.918 : 433352069.0 2591 0.947 : 433352070.0 2215 0.926 : 433352071.0 2496 0.936 : 433352072.0 2551 0.957 : 433352073.0 2466 0.959 : 433352074.0 2560 0.933 : 433352075.0 2212 0.902 : 433352078.0 2059 0.870 : 433352080.0 2123 0.878 : 433352081.0 2409 0.963 : 433352086.0 2799 0.898 : 433352088.0 3449 0.931 : 433352091.0 2187 0.874 : 433352116.0 2242 0.870 : 433352129.0 2451 0.865 : 433352136.0 3040 0.918 : 433352137.0 2183 0.899 : 433352151.0 2377 0.884 : 433352155.0 2527 0.871 : 433352166.0 2972 0.927 : 433352180.0 2113 0.882 : 433352186.0 2732 0.880 : 433352187.0 2646 0.952 : 433352188.0 2697 0.979 : 433352206.0 2926 0.909 : 433352208.0 2631 0.897 : 433352221.0 4110 0.993 : 433352280.0 2460 0.886 : 433352292.0 2086 0.835 : 433352299.0 3057 0.905 : 433352316.0 2347 0.872 : 433352318.0 2612 0.903 : 433352382.0 2786 0.926 : 433352607.0 2269 0.848 Total number of 1 second bins: 2421 Bins with >0 counts : 2421 Bins with >2000 counts : 388 388 of 388 high count rate bins were dominated by noise Noise dominated 16.03% of total time, 16.03% of detector on time (defined as non-zero counts)