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Abstract

In this essay I have discussed a very important aspect of the supersonic
motion i.e. shock waves.Beginning from steepening into a shock wave , I
have discussed the shock adiabatic and the case of a polytropic gas and then
discussed a few astrophysical examples.
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1 Introduction

When the velocity of a fluid in motion becomes comparable with or exceeds that
of sound , effects due to compressibility of the fluid becomes of prime impor-
tance.Such motions are in practice met with in gases.The dynamics of high - speed
flow is therefore usually called gas dynamics.

The flow of gas is entirely different in nature according as it is subsonic or
supersonic ,i.e. the velocity is less than or greater than that of sound .One of the
most distinctive features of supersonic flow is the fact that there can occur in it
what are called shock waves , which is the topic of this essay.

2 The Propagation of Disturbances in a moving gas

If a gas in steady motion receives a slight perturbation at any point , the effect of
the perturbation is subsequently propagated through the gas with the velocity of
sound ( relative to the gas itself).The rate of the propagation of the disturbance
relative to a fixed system of coordinates is composed of two parts : firstly, the
perturbation is ”carried along” by the gas flow with velocity v and , secondly ,
it is propagated relative to gas with the velocity c in any direction n . Let us
consider a uniform flow of gas with velocity v,subjected to a small perturbation
at some point O (fixed in space).The velocity v+ cn with which the perturbation
is propagated from O (relative to the fixed system of coordinates) has different
values for different directions of the unit vector f

¯
n.We obtain all its possible values

by placing one end of the vector v at the point O and drawing a sphere with
radius c centered at the other end.The vectors from O to points on this sphere
give the possible magnitudes and directions of the velocity of propagation of the
perturbation.Let us first suppose that v < c.Then the vector v + c n can have any
direction in space(Fig. 1).That is , a disturbance which starts from any point
in a subsonic flow will eventually reach every point in the gas.If , on the other
hand,v > c,the direction of the vector v + cn can lie only in a cone with its vertex
at O, which touches the sphere with its centre at the other end of the vector v. If
the aperture angle of the cone is 2 α, then, as is seen from the figure (1),

sinα = c/v (1)

Thus a disturbance starting from any point in a supersonic flow is propagated only
downstream within a cone whose aperture angle decreases with the ratio c/v.A
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disturbance starting from O does not affect the flow outside this cone.

Figure 1:

The angle α determined by equation (1) is called the Mach angle.The ratio v/c
is the Mach number :

M = v/c (2)

The surface bounding the region reached by a disturbance starting from a given
point is called the Mach surface or characteristic surface.

3 Steepening into Shock Waves

Let us consider a piston being pushed into a tube of gas ( Fig (2) ).We assume
that the piston is being moved into the gas at supersonic velocity.So the piston
moves so rapidly that the gas behaves adiabatically.As the piston starts from rest
with a small displacement ,the gas next to the piston gets slightly compressed
.As the compression is a perturbation ,this perturbation travels as a signal into
the gas at the sound speed .As the piston continues to move into the gas ,the gas
next to piston is further compressed and a further signal travels into the already
compressed gas ; this signal travels at the sound speed of the already compressed
gas.Because the sound speed cad

s ∝ρ1/3 this new sound speed is slightly higher
than the original.Hence, arbitrarily diviing the gas in front of the piston into zones
labelled 1,2,3,..., we see that the densities ρ(1),ρ(2),ρ(3),... in these zones obey
ρ(1) > ρ(2) > ρ(3) > ..., so that the sound speed cad

s (1) > cad
s (2) > cad

s (3)...
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.Thus , ’news’ of the piston travels into the gas at cad
s , and gas sufficiently far to

the right remains at its original density until this ’news’ has had time to arrive.
Hence, the denser zones to the left continually try to catch up the lower density
zones to the right; the compression of the left hand zones continually increases,
and the density profile in front of the piston therefore steepens ( Fig. 3 )

Figure 2: Piston moving at supersonic speed into the gas

Figure 3: Steepening of the density profile leading to formation of the shock waves

But the steepening of the density profile cannot continue indefinitely. When
the gradients exist in the flow over a distance scale of the order of the mean-
free-path,microscopic processes - particularly those giving rise to viscous forces
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must be included in the momentum equation .( Thermal conduction also becomes
important in the energy equation under these circumstances.)The viscous stress
converts the fluid’s ordered , bulk kinetic energy into microscopic kinetic en-
ergy, i.e. thermal energy.The ordered fluid velocity v thereby is rapidly -almost
discontinuously-reduced from supersonic to subsonic, and the fluid is heated. The
cooler, supersonic region of incoming fluid is said to be ahead of or upstream
from the shock; the hotter , subsonic region of outgoing fluid is said to be up-
stream from the shock.The discontinuous profile given in fig( 3 ) can be thought
of as the eventual result. This surface at which the pressure (and also density and
velocity ) change discontinuously is called a shock wave.In many cases; however
, a detailed picture of the shock is not required; since the shock thickness ( λd is
much smaller than the lengthscales of gradients in the gas on each side of it, we
can approximate the shock as a discontinuity in the gas flow. The connection be-
tween the gas density, velocity and pressure (or temprature ) across this idealised
discontinuity can be found by applying conservation laws.

4 Surfaces of Discontinuity

The rate of motion of these surfaces of discontinuity bear no relation to the ve-
locity of the gas itself.The gas particles in their motion may cross a surface of
discontinuity.

Certain boundary conditions must be satisfied on the surfaces of discontinuity
To formulate these conditions , we consider an element of the surface and use a
coordinate system fixed to this element,with the x-axis along the normal.

Firstly, the mass flux must be continuous : the mass of gas coming from one
side must equal the mass leaving the other side.The mass flux through the surface
element considered is ρvx per unit area.Hence we must have ρ1v1x = ρ2v2x,where
the suffixes 1 and 2 refer to the two sides of the surface of discontinuity.

The difference between the two values of any quantity on the two sides of the
surface will be denoted by enclosing it in square brackets; for example, [ρvx] =
ρ1v1x −ρ2v2x,and the conditionjust derived can be written

[ρvx] = 0 (3)
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Next, the energy flux must be continuous .We therefore obtain the condition

[ρvx(
1
2

v2 +w)] = 0 (4)

Here w is the heat function per unit mass of the fluid.
Finally, the momentum flux must be continuous , i.e. the forces exerted on

each other by the gases on the two sides of the surface of discontinuity must be
equal. The momentum flux per unit area is pni +ρvivknk. The normal vector n
is along the x-axis. The continuity of the x-component of the momentum flux
therefore gives the condition

[p+ρv2
x] = 0, (5)

while that of the y and z components gives

[ρvxvy] = 0, [ρvxvy] = 0 (6)

Equations ( 3 )-( 6 ) form a complete system of boundary conditions at a surface of
discontinuity.From them we deduce the possibility of two types of discontinuity.

In the first type , there is no mass flux through the surface . This means
thatρ1v1x = ρ2v2x = 0. Since ρ1 and ρ2 are not not zero,it follows that v1x = v2x =
0.The conditions (4) and (6) are then satisfied, and the condition (5) gives p1 = p2.Thus
the normal velocity component and the gas pressure are continuous at the surface
of discontinuity :

[v1x = v2x] = 0, [p] = 0, (7)

while the tangential velocities vy,vz and the density may be discontinuous by any
amount.This is called a tangential discontinuity.

In the second type, the mass flux is not zero, and v1x and v2x are therefore also
not zero.From (3) and (6)

[vy] = 0, [vz] = 0, (8)

i.e, the tangential velocity is continuous at the surface of discontinuity.The pres-
sure , the density and the normal velocity , however,are discontinuous, their dis-
continuities being related by (3)-(5).In the condition (4) we can cancel ρvx by
(3),and replace v2 by v2

x since vy and vz are continuous. Thus the following condi-
tions must hold at the surface discontinuity in this case:

[ρvx] = 0 (9)

[
1
2

v2 +w] = 0 (10)
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[p+ρv2
x] = 0, (11)

A discontinuity of this kind is called a shock wave,or simply a shock .
If we now return to the fixed coordinate system , we must everywhere replace

vx by the difference between the gas velocity component vn normal to the surface
of surface:

vx = vn −u (12)

The velocities vn and u are taken in the fixed system.The velocity vx is the ve-
locity of the gas relative to the surface of discontinuity ; we can also say that
−vx = u− vn is the rate of propagation of the surface relative to the gas.If vx is
discontinuous,this velocity has different values relative to the gas on the two sides
of the surface.

5 The Shock Adiabatic

In this type of discontinuity,the tangential component of the gas velocity is
continuous. We can therefore take a coordinate system in which the surface el-
ement considered is at rest, and the tangential component of the gas velocity is
zero on both sides.Then we can write the normal component vx as v simply, and
conditions (9),(10),(11) take the form

ρ1v1 = ρ2v2 = j (13)
1
2

ρ1v2
1 +w1 =

1
2

ρ2v2
2 +w2 (14)

p1 +ρ1v2
1 = p2 +ρ2v2

2 (15)

where j denotes the mass flux density at the surface of discontinuity . We take j
positive , with the gas going from side 1 to side 2.That is, gas 1 is the one into
which the shock wave moves, and gas 2 remains behind the shock.The side of the
shock wave towards gas 1 is the front of the shock, and that towards gas 2 is the
back.

Using the specific volumes V1 = 1/ρ1,V2 = 1/ρ2,we obtain from (13)

v1 = jV1, v2 = jV2, (16)

and , substituting in (14),

p1 + j2V1 = p2 + j2V2, (17)
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or
j2 = (p2 − p1)/(V1−V2), (18)

This formula, together with (16), relates the rate of propagation of a shock wave
to the pressures and densities of the gas on the two sides of the surface.

Since j2 is positive, we see that either p2 > p1,V1 > V2,or p2 < p1,V1 < V2;we
shall see that only the former case can actually occur.

We note the following formula for the velocity difference v1 − v2

v1 − v2 = j(V1 −V2) (19)

Substituting (18) in (19) we obtain

v1 − v2 = [(p2 − p1)((V1−V2)]
1/2 (20)

Next,we write(15) in the form

w1 +
1
2

j2V 2
1 = w2 +

1
2

j2V 2
2 (21)

and,substituting j2 from (18),obtain

w1 −w2 +
1
2
(V1 +V2)(p2 + p1) = 0. (22)

If we replace the heat function w by ε+pV,where ε is the internal energy, we can
write this relation as

ε1 − ε2 +
1
2
(V1 −V2)(p1 + p2) = 0. (23)

These relations hold between the thermodynamic quantities on the two sides of
the surface of discontinuity.

For given p1,V1,equation (22) or (23) gives the relation between p2 and V2.This
relation is called the shockadiabatic or the Hugoniotadiabatic (W.J.M.Rankine
1870; H.Hugoniot 1885).It is represented graphically in the pV -plane(Fig 4) by
a curve passing through the given point (p1,V1)corresponding to the state of gas
1 in front of the shock wave , which we shall call the intialpoint.The shock adi-
abatic cannot intersect the vertical line V = V1 except at the intial point.For the
existence of another intersection would mean that two different pressures satisfy-
ing (23) correspond to the same volume.For V1 = V2,however, we have from (23)
also ε1 = ε2, and when the volumes and energies are the same the same pressures
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Figure 4: The shock adiabatic.

must be the same. Thus the line V = V1 divides the shock adiabatic into two parts,
each of which lies entirely on the side of the line.Similarly, the shock adiabatic
meets the horizontal line p = p1 only at the point (p1,V1).

Let aa
′

(Fig 5) be the shock adiabatic through the point (p1,V1) as intial
point.We take any point (p2,V2) on it and draw through that point another adi-
abatic bb

′

, for which (p2,V2) is an intial point.The pair of values(p1,V1) satisfies
the equation of this adiabatic also.The adiabatics aa

′

and bb
′

therefore intersect at
the two points (p1,V1) and (p2,V2). The adiabatics are not identicalThe equation
of the shock adiabatic can not be written in the form f (p,V) = constant, where f
is some function.The shock adiabatic is determined by two parameters,the intial
values p1 and V1.Hence, if two (or more) successive shock waves take a gas from
state 1 to state 2 and from there to state 3,the transition from state1 to state 3
cannot in general be affected by the passage of any one shock wave.

For a given intial thermodynamic state of the gas (i.e. for given p1 and V1

),the shock wave is defined by only one parameter;for instance, if the pressure p2

behind the shock is given , then V2 is determined by the Hugoniot adiabatic, and
the flux density j and the velocities v1 and v2 are then given by formulae (16) and
(18).

The formula (18) has the following convenient interpretation.If the point (p1,V1)
on the shock adiabatic (Fig 4 ) is joined by a chord to any other point (p2,V2) on
it , then (p2 −p1)/(V2−V1) = −j2 is the slope of this chord relative to the axis
of abscissae. Thus j, and therefore the velocity of the shock wave are determined
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Figure 5:

at each point of the shock adiabatic by the slope of the chord joining that point to
the intial point.

The entropy is discontinuous at a shock wave .By the law of increase of en-
tropy, the entropy of a gas can only increase during its motion.Hence the entropy
s2 of the gas which has passed through the shock waves must exceed the intial
entropy s1 :

s2 > s1 (24)

The presence of shock waves results in an increase in those flows which can
be regarded as motions of an ideal fluid in all space, the viscosity and thermal
conductivity being zero.The increase in entropy signifies that the motion is irre-
versible,i.e. energy is dissipated. Thus the discontinuities are a means by which
energy can be dissipated in the motion of an ideal fluid.

The true mechanism by which the entropy increases in shock waves lies in the
dissipative processes occurring in the very thin layers which actual shock waves
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are.The increase in entropy in a shock wave has an important effect on the motion:
even if there is potential flow in front of the shock wave , the flow behind it is in
general rotational.

6 Shock Waves in a Polytropic gas

We consider a shock wave in a polytropic gas.The heat function of such a gas is
given by The heat function of such a a shock wave in a polytropic gas.

w = cpT = pV/(γ−1) = c2/(γ−1) (25)

Substituting this in (22), we have Using this formula, we can determine any of the
quantities p1,V1, p2,V2 from the other three.The ratio V2/V1 is a monotonically
decreasing function of the ratio p2/p1, tending to the finite limit of

V2

V1
=

ρ1

ρ2
= (γ−1)(γ+1) (26)

The curve showing p2 as a function of V2 for given p1,V1 (the shock adiabatic)
is represented in Fig(6).It is a rectangular hyperbola with asymptotes V2/V1 =
(γ− 1)/(γ + 1), p2/p1 = −(γ− 1)/(γ + 1). Only the upper part of the curve ,
above the point V2/V1 = p2/p1 = 1 has physical significance.It is shown in fig (6)
by a continuous line.

For the ratio of the temperatures on the two sides of the discontinuity we find,
from the equation of state for a perfect gas, T2/T1 = p2V2/p1V1, that

T2

T1
=

p2

p1

(γ+1)p1 +(γ−1)p2

(γ−1)p1 +(γ+1)p2
(27)

For the mass flux we obtain from Eq. (18) and (26)

j2 = [(γ−1)p1 +(γ+1)p2]/2V1 (28)

and then for the velocities of propagation of the shock wave ralative to the gas
before and behind it

v2
1 =

1
2

V1 [(γ−1)p1 +(γ+1)p2]

=
1
2

c2
1

γ

[

γ−1+(γ+1)
p2

p1

]

v2
2 =

1
2

V1
[(γ−1)p1 +(γ−1)p2]

2

(γ−1)p1 +(γ+1)p2

=
1
2

c2
2

γ

[

γ−1+(γ+1)
p1

p2

]

(29)
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Figure 6:

their difference being

v1 − v2 = (2V1)(p2 − p1)
1/2/(γ−1)p1 +(γ+1)p2. (30)

There are some formulae useful in applications, which express the ratios of den-
sities, pressures and tempratures in a shock wave in terms of the Mach number
M1 = v1/c1. These formulae are easily derived from the foregoing results:

ρ2/ρ1 = v1/v2 = (γ+1)M2
1/[(γ−1)M2

1 +2], (31)

p2/p1 = 2γM2
1/(γ+1)− (γ−1)/(γ+1), (32)

T2/T1 = [2γM2
1 − (γ−1)][(γ−1)M2

1 +2]/(γ+1)2M1. (33)

The Mach number M2 is given in terms of M1 by
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M 2
2 =

2+(γ−1)M 2
1

2γM 2
1 − (γ−1)

. (34)

. This is symmetrical in M2 and M1; it may be written in the form:

2γM 2
1 M 2

2 − (γ−1)(M 2
1 +M 2

2 ) = 2. (35)

We can give the limiting results for very strong shock waves, in which (γ−
1)p2 is very large compared with (γ+1)p1. From (27) and (28) we have

V2

V1
=

ρ1

ρ2
=

γ−1
γ+1

(36)

T2

T1
=

(γ−1)p2

(γ+1)p1
(37)

The ratio T2/T1 increases to infinity with p2/p1, i.e. the temprature discontinuity
in a shock wave, like the pressure discontinuity, can be arbitrarily great. The
density ratio, however, tends to a constant limit; e.g., for a momoatomic gas the
limit is ρ2 + 4ρ1, and for a diatomic gas ρ2 + 6ρ1. The velocities of propagation
of a strong shock wave are

u1 =

[

1
2
(γ+1)p2V1

]1/2

, u2 =

[

1
2(γ−1)2 p2V1

γ+1

]1/2

. (38)

They increase as the square root of the pressure p2.
Lastly, there are relations for weak shock waves, which are the leading terms

in expansions in powers of the small quantity z = (p2 − p1)/p1:

M1 −1 = 1−M2 = (γ+1)z/4γ, (39)

c2/c1 = 1+(γ−1)z/2γ. (40)

ρ2/ρ1 = 1+ z/γ− (γ−1)z2/2γ. (41)

These are the terms giving the first correction to the acoustic approximation.
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7 Similarity Solutions - Sedov-Taylor Blast Wave

Strong explosions can generate shock waves. Examples include atmospheric nu-
clear explosions, supernova explosions, and depth charges. The debris of a strong
explosion will be at much higher pressure than the surrounding gas and will there-
fore drive a strong spherical shock into the surroundings. Intially, this shock wave
will travel at roughly the radial speed of the expanding debris. However the mass
of fluid swept up by the shock will eventually exceed that of the explosion debris.
The shock will decelerate and the energy of the explsion will be transferred to the
swept-up fluid.Let us calculate how fast and how far the shock front will travel.

First let us make an order of magnitude estimate. Let the total energy of the
explosion be E and the density of the surrounding fluid ( assumed uniform ) be ρ0.
Then after time t, when the shock radius is R(t), the mass of the swept-up fluid will
be ≈ ρ0R3. The fluid velocity behind the shock will be roughly the radial velocity
of the shock front, v ≈ Ṙ ≈ R/t, and so the kinetic energy of the swept-up mass
will be ≈ ρ0R5/t2. There will also be the internal energy in the post-shock flow,
with energy density roughly equal to the post-shock pressure, ρε ≈ P ≈ ρ0Ṙ2 [cf.
the strong-shock jump conditions with P1 ≈ ρ0c2

0 so P1M2 ≈ ρ0v2 ≈ ρ0Ṙ2]. The
total internal energy within the expanding shock will then be ≈ ρR2Ṙ2, equal in
order of magnitude to the kinetic energy. Equating either term to the total energy
E of the explosion, we obtain the rough estimate

E = Kρ0R5t−2, (42)

which implies that at time t the shock front has reached the radius

R = (
E

Kρ0
)1/5t2/5. (43)

Here K is a numerical constant of order unity. This scaling should hold roughly
from the time that the mass of the debris is swept up to time that the shock weakens
to a Mach number of order unity so we can no longer use the strong-shock value
≈ ρ0Ṙ2 for the post shock pressure.

If we assume the motion remains radial and the gas is perfect with constant
specific-ratio γ, then we can solve for the details of the flow behind the shock front
by integrating the radial flow equations

∂ρ
∂t

+
1
r2

∂
∂r

(r2ρv) = 0,
∂v
∂t

+
∂v
∂r

+
1
ρ

∂P
∂r

= 0,
∂
∂t

(
P
ργ )+ v

∂
∂r

(
P
ργ ) = 0. (44)
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The first two equations are the continuity equation and Euler equation written
for a spherical flow. The third equation is energy conservation expressed as the
adiabatic-expansion relation, Pαργ moving with a fluid element. although P

ργ is
time-independent for each fluid element, its value will change from element to
element. Gas that has passed through shock more recently will be given a smaller
entropy than gas which was swept up when the shock was stronger, and thus have
a smaller value of P

ργ .
Given suitable intial conditions, the above partial differential equations can be

integrated numerically. However, there is a practical problem in that it is not easy
to determine the intial conditions in an explosion! Fortunately, at late times, when
most of the mass has been swepr up, the fluid evolution is independent of the
details of the intial expansion and can be understood analytically as a similarity
solution. By this, it means that the shape of the radial profiles of pressure, density
and velocity are independent of time.

The characteristic scaling length in the explosion is the radius R(t) of the
shock, so the fluid and thermodynamic variables should be expressible as some
characteristic values multiplying universal functions of

ξ = r/R(t). (45)

Our thermodynamic variables are P,ρ,ε and a natural choice for their character-
istics values is the values immediately behind the shock. If we assume that the
shock is strong then we can use the strong-shock jump conditions to determine
those values and write

P =
2

γ+1
ρ0Ṙ2 f (ξ),ρ =

γ+1
γ−1

ρ0g(ξ), (46)

v =
2

γ+1
Ṙh(ξ) (47)

with f(1) = g(1) = h(1) since ξ = 1 is the shock’s location. The velocity v is
scaled to the post-shock velocity measured in the inertial frame in which the up-
stream fluid is at rest, rather than in the non-inertial frame in which the declaration
shock is at rest. The self-similarity anszatz(47)and the resulting self similar solu-
tion for the flow are called the Sedov-Taylor blast-wave solution, since L.I.Sedov
and G.I Taylor independently developed it.

We need one more piece of information before we can solve for the flow: the
variation of shock radius R with time. However all that is necessary is the scaling
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R = (E/Kρ0)
1/5t1/5 ∝ t2/5[eq 43] with the constant K left undetermined for the

moment. The partial differential equations(44) can then be transformed into ordi-
nary differential equations by inserting the anszatz(47), changing the independent
variables from r,t to R,ξ and using

( ∂
∂t

)

r
= −

(ξṘ
R

)( ∂
∂ξ

)

R
+ Ṙ

( ∂
∂R

)

ξ
= −

(2ξ
5t

)( ∂
∂ξ

)

R
+

2R
5t

( ∂
∂R

)

ξ
(48)

( ∂
∂r

)

t
=

( 1
R

)( ∂
∂ξ

)

R
(49)

The three resulting first order deifferential equations are rather complex but can
infact be solved analytically (e.g Landau and Lifshitz 1959). The results for an
explosion in air are exhibited in fig (7).

Using these solutions for f (ξ),g(ξ),h(ξ), we can evaluate the flows’s energy
during time interval when this similarity solution is accurate. The energy E is
given by the integral

E =

Z R

0
4πr2drρ

(1
2

v2 + ε
)

(50)

=
4πρ0R3Ṙ2(γ+1)

γ−1

Z 1

0
dξξ2g

( 2h2

(γ+1)2 +
2h2

(γ+1)2g

)

(51)

Here I have used eqn (47) and substituted ε = P/ρ(γ− 1)for the internal en-
ergy. The energy E appears not only on the left side of this equation, but also on
the right, in the terms ρ0R3Ṙ2 = (4/25)E/K. Thus, E cancel out, and the equation
(51) becomes an equation for the unknown constant K. Evaluating that equation
numerically, we find that K varies from 2.5 to 1.4 as γ increases from 1.4(air) to
1.67(monatomic gas or fully ionised plasma).

Let us see how the fluid behaves in this blast-wave solution. The fluid that
passes through the shock is compressed so that it almost occupies a fairly thin
spherical shell immediately behind the shock. This shell moves somewhat slower
than the shock[v = 2Ṙ/(γ + 1); Eq.(47) and fig (7). As the post shock flow is
subsonic, the pressure within the blast wave is fairly uniform; infact the central
pressure is typically half the maximum pressure immediately behind the shock.
This pressure on the spherical shell, thereby accelerating the freshly swept-up
fluid.
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Figure 7: Scaled pressure, density and velocity as a function of scaled radius
behind the Sedov-Taylor blast wave.

7.1 Supernovae

The evolution of most massive stars ends in supernova explosion in which a neu-
tron star of mass m ∼ 3× 1030 kg is formed. This neutron star has a gravita-
tional binding energy of about 0.1mc2 ∼ 3 × 1046 J. Most of this binding en-
ergy is released in the form of neutrinos in the collapse that forms the neutron
star, but an energy E ∼ 1044J drives off the outer envelope of the presupernova
star, a mass M0 ∼ 1031kg. This stellar material escapes with rms speed V0 ∼

2E/M1/2
0 ∼ 5000kms−1. The expanding debris eventually drives a blast wave into

the surrounding interstellar medium of density ρ0 ∼ 10−21kgm−3. The expan-
sion of the blast wave can be modeled using the Sedov-Taylor solution after the
swept-up interstellar gas has become large enough to dominate the blast wave,
so the star dominated initial conditions are no longer important-i.e, after a time
∼ (3M0/4πρ0)

1/3/V0 ∼ 1000yr.The blast wave then decelerates in a Taylor-Sedov
self similar way until the shock speed nears the the sound speed in the surround-
ing gas; this takes about 100000yr.Supernova remnants of this sort are efficient
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Figure 8: Cassiopeia A - a supernova remnant left behind an exploring star in our
galaxy.

emitters of radio waves and several hundred have been observed in the Galaxy.

In some of the younger examples, like Cassiopiea A, (fig 8) it is possible to
determine the expansion speed , and the effects of decceleration can be measured.
The observations are consistent with the prediction of the Sedov-Taylor solution,
namely that the radius varies as R ∝ t2/5 or Ṙ = −3Ṙ2/2R

8 Isothermal Shocks

Now we consider the case when the shocked gas cools by radiation.We shall con-
sider only the extreme case of very efficient cooling which allows the basic condi-
tions of section (5) to be still satisfied .Further, we shall assume that the gas returns
to its original pre-shock temprature.This situation is depicted schematically in fig
( 9 ).

Gas flows into shock S across which the flow variables are related by the stan-
dard Rankine-Hugoniot conditions. There is then a region in which cooling by
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Figure 9: Schematic representation of an isothermal shock wave.

radiation occurs.C is a surface at which we assume the gas has returned to pre-
shock temprature. if S and C are close enough, gas flows so quickly between S
and C that the entire region can be regarded as thin and the flow time-independent
Surfaces S and C can then be considered to form one surface across which the
density and other parameters change but the temprature remains constant. This is
called an isothermal discontinuity or an isothermal shock wave.

Let subscripts 2 refer to the downstream conditions beyond C fig ( 9 ) and
subscripts 0 to the upstream conditions . Under the circumstances outlined above,
the continuity and momentum conservation equations are the same as for a normal
shock. The change occurs in the energy equation.Instead of summing over the
various forms of energy, which would now include radiation, we simply write

T0 = T2 = constant. (52)

The sound speed is now

c2 =
P
ρ

=
kT
µm

(53)

where we c is the isothermal sound speed. If c0 is the sound speed at temprature
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T0, the condition of isothermality across the discontinuity can be written as

P0

ρ0
=

P2

ρ2
= c2

0. (54)

We assume that the shock is strong, i.e. ρ0u2
0 � P0. The momentum equation then

becomes on using (54)
ρ2c2

0 = ρ0u2
0 −ρ2u2

2 (55)

Hence from the continuity condition,

u2
2 −u2u0 + c2

0 + c2
0 = 0. (56)

The solution of this is

u2 = (
u0

2
)(1±

√

(1−
4c2

0

u2
0

) (57)

Since we have assumed the shock to be strong, u0 � c0 and thus

u2 = (
u0

2
)(1± (1−

2c2
0

u2
0

). (58)

The positive sign gives the trivial solution u2 ≈ u0. Since we know compression
must occur across the adiabatic shock, we must take the negative sign and obtain

u2 ≈
c2

0

u0
. (59)

The upstream Mach number, which is now defined with respect to the isothermal
sound speed is

M0 =
u0

c0
. (60)

Thus we can write using the continuity equation and equation (59)

u0

u2
=

ρ2

ρ0
= M2

0 . (61)

We now see tha the compression across a strong isothermal shock depends on the
upstream Mach number, in contrast with the case of a strong adiabatic shock for
which the compression is limited to a factor of 4. The physical reason for this
is that in order that the gas remain isothermal, internal energy has to be radiated
away. This internal energy would otherwise have limited the compression.
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The post-shock pressure is now given by

P2 = ρ2c2
0 = ρ0u2

0. (62)

We express these results in terms of velocities measured in a fixed frame of ref-
erence, i.e. one in which the shock is moving.The necessary transformation is
affected by the relationships

u0 = v0 −Vs (63)

and
u2 = v2 −Vs. (64)

Here Vs is the shock velocity in the fixed frame.v0 and v2 respectively be the up-
stream and downstream gas velocities, measured in the fixed frame. We will as-
sume that VS � v0. The compression ratio ρ2/ρ0 remains unchanged .The velocity
ratio is

VS

VS − v2
= M2

0 (65)

Thus
v2 = VS(1−1/M2

0) ≈Vs (66)

From equation (66) the post-shock pressure is

P2 = ρ0V 2
s (67)

The gas behind a strong isothermal shock moves in the same direction and with
the same velocity as the shock.

9 Spherical acceretion and winds

The corona of a star can be in static equlibrium only if there is some finite pres-
sure at infinity to stop it from expanding.If the presure at infinity is less, then
there will be an outward flow.On the other hand , if the pressure at infinity is
more than what is needed to maintain static equlibrium ,then there would be an
inward flow.Parker(1958) first perdicted a wind from the sun and worked out a
spherically symmetric model for it .The first spherically symmetric inward accre-
tion model was developed by Bondi(1952). Since spherical wind and spherical
accretion are very similar problems, we present them together.When a gravitating
object accretes matter from the space around it, most often the accreting matter
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has a non-isotropic distribution around the gravitating centre and possesses angu-
lar momentum leading to the formation of an accretion disk.Although the solar
wind is found to be somewhat non-isotropic (mainly due to the presence of mag-
netic fields in the solar atmosphere) and the same is expected for the wind from
other stars , a spherical wind model probably has more connections with reality
than a spherical accretion model.

Let us consider a steady spherical flow such that velocity v is independent
of time and is in the radial direction ( either inward or outward ). Under steady
conditions, the same mass flux has to flow through spherical surfaces at different
distances.Hence,

r2ρv = constant (68)

from which
2
r

+
1
ρ

dρ
dr

+
1
v

dv
dr

= 0 (69)

Assuming the gravitational field to be produced by a central mass M , the Euler
equation gives

ρv
dv
dr

= −
dp
dr

−
GMρ

r2 (70)

We now have to solve (69) and (70) with an appropriate energy equation . The
problem is simplest if we replace the energy equation by the assumption of an
isothermal condition,i.e. if the pressure is taken to be p = RρT with T as a con-
stant.(69) and (70) remain invariant when we make the transformation v to -v. In
other word, steady spherical wind and steady spherical accretion are mathemat-
ically the same problem. Once we have a solution for a spherical wind, we can
immediately get a solution for a spherical accretion by reversing the velocity at
all points.This symmetry between spherical accretion and wind holds only in the
steady state. Time - dependent spherical acretion and wind problems are no longer
symmetric.

par We write p = v2
cρ in (70) where v2

c = RT is taken as a constant.vc is the
isothermal sound speed. We eliminate ρ from (69) and (70), which gives

(v−
v2

c

v
)
dv
dr

=
2v2

c

r
−

GM
r2 (71)

It is possible for v to be equal to vc only at the distance

r = rc =
GM
2v2

c
(72)
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Figure 10: Different solutions v(r) aaaas given by the equation(73).

so that both sides of (71) are zero simultaneously.We integate (71) to obtain

(
v
vc

2
)− log(

v
vc

2
) = 4log

r
rc

+
2GM
rv2

c
+C, (73)

where C is the constant of integration. The solutions for the different values of C
are fhown in fig (10). It turns out that the solutions of types I and II are double-
valued and hence unphysical. The solutions of type III are supersonic everywhere,
whereas solutions of type IV are subsonic everywhere(here we use the words ’sub-
sonic’ and ’supersonic’ with respect to the isothermal sound speed vc). Only so-
lutions of type V and VI pass through the critical point r = rc, v = vc, and are
subsonic and supersonic in different regions. We find from (73) that C = -3 for
these solutions. Which particular solution is realized in a given situation again
depends on the boundary conditions Parker (1958) considered the solar wind to
start from subsonic speeds near the solar surface and then to accelerate to high
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speeds. Hence the solution V is appropriate for Parker’s problem. On the other
hand, Bondi(1952) studied an inflow starting from small speeds at infinity and
becoming faster in the interior .So VI corresponds to the solution for Bondi’s
problem.
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