The Isothermal Sphere

For a polytropic equation of state

$$
P=K \rho^{\gamma} \equiv K \rho^{1+\frac{1}{n}}
$$

we have the hydrostatic balance equation

$$
\frac{d \Phi}{d r}=-\gamma K \rho^{\gamma-2} \frac{d \rho}{d r}
$$

where Φ is the gravitational potential.

In case of an "isothermal" equation of state $P \propto \rho$, i.e., $\gamma=1$ and $n=\infty$. The hydrostatic equation can then be integrated to

$$
\Phi=-K \ln \left(\frac{\rho}{\rho_{\mathrm{c}}}\right)
$$

where Φ has been assumed to be zero at the centre. Hence

$$
\rho=\rho_{\mathrm{c}} \exp \left(-\frac{\Phi}{K}\right)
$$

Inserting this in the Poisson's equation one finds

$$
\begin{equation*}
\frac{d^{2} \Phi}{d r^{2}}+\frac{2}{r} \frac{d \Phi}{d r}=4 \pi G \rho_{\mathrm{c}} \exp \left(-\frac{\Phi}{K}\right) \tag{1}
\end{equation*}
$$

or an equivalent form in terms of density:

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}(\ln \rho)\right)=-\frac{4 \pi G \rho}{K} \tag{2}
\end{equation*}
$$

which has an exact solution

$$
\begin{equation*}
\rho(r)=\frac{K}{2 \pi G r^{2}} \tag{3}
\end{equation*}
$$

In this case the density is not finite at the centre, so such configurations are called "Singular Isothermal Spheres" (SIS).

Non-singular solutions can be determined by imposing the appropriate boundary conditions. Writing eq. (1) as

$$
\begin{equation*}
\frac{d^{2} w}{d z^{2}}+\frac{2}{z} \frac{d w}{d z}=\exp (-w) \tag{4}
\end{equation*}
$$

in terms of the dimensionless variables

$$
z=A r, \quad A^{2}=\frac{4 \pi G \rho_{\mathrm{c}}}{K}, \quad \Phi=K w
$$

one could impose the boundary conditions

$$
w=w^{\prime}=0 \text { at } z=0
$$

and solve the equation numerically to yield a non-singular solution. Eq (4) is referred to as the "Isothermal Lane Emden equation". From the boundary conditions it is apparent that near the centre $(z=0), w$ behaves as $w \propto z^{2}$, and hence the density behaves as

$$
\rho=\frac{\rho_{\mathrm{c}}}{\exp (w)} \approx \frac{\rho_{\mathrm{c}}}{1+\left(z / z_{0}\right)^{2}}=\frac{\rho_{\mathrm{c}}}{1+\left(r / r_{0}\right)^{2}}
$$

where the scaling radius

$$
r_{0} \equiv \frac{z_{0}}{A}=\sqrt{\frac{9 K}{4 \pi G \rho_{\mathrm{c}}}}
$$

is known as the "core radius" or the "King radius". Note that the SIS behaviour ($\rho \propto r^{-2}$) is recovered at $r \gg r_{0}$.

The isothermal sphere is a configuration of infinite radius, as expected for $n>5$, and infinite mass. It is easy to see from the SIS density profile that the mass included within a radius r grows as

$$
M(r)=\int_{0}^{r} 4 \pi r^{2} \rho(r) d r=\frac{2 \pi K}{G} r
$$

i.e., linearly with radius.

Where isothermal sphere models are applicable in practice, for example, stellar cores with no nuclear burning, or star clusters, external circumstances, such as non-zero surface pressure or tidal interaction with nearby bodies, truncate the solution to a finite radius and mass.

