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Statistics of Gas and Radiation

Most of the matter in the Universe exists in gaseous form. A fraction (∼ 10%)
of it is baryonic matter, like what we are familiar with in everyday experience,
and a larger fraction (∼ 90%) is non-baryonic “dark matter” the nature of which
we are not very sure about. The “dark matter” makes itself felt only through its
gravitational interaction. All “visible” matter is therefore still baryonic.

The baryonic matter in the universe is composed mainly of Hydrogen (about three-
quarters of the mass) and Helium (about a quarter). There is a small fraction of
heavier elements which, collectively, are referred to as “metals”. The abundance
of “metals” in the solar neighbourhood is about 2% by mass, while the Hydrogen
abundance is ∼ 71%. Table 1 shows the mass fraction of several elements in the
solar neighbourhood.

Table 1: Mass fraction of different elements in the Solar neighbourhood

H 0.71E+00
He 0.28E+00
C 0.34E-02
N 0.99E-03
O 0.96E-02
Ne 0.18E-02
Na 0.35E-04
Mg 0.66E-03
Al 0.56E-04
Si 0.70E-03
S 0.37E-03
Cl 0.47E-05
Ar 0.11E-03
Ca 0.65E-04
Cr 0.18E-04
Fe 0.13E-02
Co 0.36E-05
Ni 0.73E-04
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Equation of State

The equation of state of a gas represents a relation connecting the state variables
such as pressure, density, temperature, internal energy etc. The relation between
pressure and other state variables will be of much interest, so let us first exam-
ine this. We will deal with gas where the energy of mutual interaction between
particles is negligible.

A gas will have particles with a distribution of kinetic energies of random motion,
and a kinetic energy ε would be associated with a momentum of the particle,
where the magnitude of the momentum p(ε) is determined by the energy. The
pressure is defined as the rate of momentum transfer in a given direction through
an unit area per unit time, and since the direction of the momentum is randomly
distributed in 3 dimensions, the pressure P is given by

P =
1
3

∫ ∞

0
n(ε)p(ε)v(ε)dε

where n(ε)dε is the number of particles with energy between ε and ε + dε in an
unit volume of the gas, and v(ε) is the speed associated with the kinetic energy ε.

We assume that particles of the gas in question have no internal degrees of free-
dom, and the kinetic energy ε is entirely that of their random translational motion.

If the random motion in the gas is non-relativistic, then we can write v = p/m and
ε = p2/2m, resulting in

P =
2
3

∫ ∞

0
n(ε)εdε =

2
3

uk

where uk is the internal energy density (kinetic energy of random motion per unit
volume).

If the gas is relativistic, v = c and ε = pc, giving

P =
1
3

∫ ∞

0
n(ε)εdε =

1
3

uk
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The proportionality constant between P and uk has a physical significance: it is
equal to γ − 1, where γ, called the “adiabatic index”, equals the ratio of spe-
cific heats for a thermal gas. Reversible adiabatic processes yield PV γ =constant,
where V is the volume of the gas. Using this, one finds that for a spherical adia-
batic expansion the total internal energy Uk = ukV of a gas (we use the notation
Uk for the total internal energy and U for the total energy including rest energy)
drops as R−2 for a non-relativistic gas and as R−1 for a relativistic gas (V ∝ R3).

We will be particularly interested in the relation between pressure P, mass density
ρ and temperature T of the gas. This, obviously, is determined by the dependence
of uk on these quantities.

At this point let us remind ourselves what we mean by a “thermal gas”. For
a classical gas, this means that all energy levels of the gas, both discrete and
continuous, are occupied according to the Boltzmann distribution:

N(ε) ∝ g(ε)e−ε/kT

where g(ε) is the so-called “density of states”. In case of quantum statistics, the
corresponding distribution is:

N(ε) ∝ g(ε)
e(ε−µ)/kT ± 1

where the positive sign in the denominator corresponds to a Fermi gas and the
negative sign to a Bose gas. Quantum statistics comes into play only when the
number of particles per phase space cell of volume h3 is of order unity. For di-
lute gases, as encountered in most astrophysical situations, classical description is
quite adequate.

If the energy distribution of particles do not follow the above laws, we call such
a distribution “non-thermal”. In many astrophysical situations we come across
“power-law” distribution of particle energies:

N(ε) ∝ ε−p

which are examples of non-thermal distribution. We will discuss later how such
energy distributions are produced.
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Quite often the gases encountered in astrophysics do have thermal distribution,
but with small departures. For example, in an atomic hydrogen gas the random
motion of the atoms may be describable by a Boltzmann distribution at a cer-
tain temperature Tk, while the population in the excited levels of the atoms may
not follow the ratio predicted by the same Boltzmann distribution. While strictly
speaking this situation is “non-thermal”, we still like to describe such a gas as a
“thermal gas”, but with a difference between the “excitation temperature” Tex for
the atomic level in question and the “kinetic temperature” Tk. In general, Tex may
be different for different energy levels.

For a classical thermal gas at a temperature T the average energy (of random
translational motion) per particle is 〈ε〉 = 3kT/2 in non-relativistic case and 〈ε〉 =

3kT in relativistic case. The corresponding values of energy density uk are then
3nkT/2 and 3nkT , where n is the number density of the gas. These yield the
familiar expression

P = nkT

in both regimes. If the gas is composed of multiple species, for example an ionised
hydrogen gas is composed of protons and electrons, then the above relation is true
for the partial pressure of each species, and the total pressure is the sum of all the
partial pressures.

The relation between pressure and mass density ρ can then be obtained from ef-
fective mass per particle. If particles are non-relativistic, this is given by

P =
ρ

µmp
kT

where µ is the “mean molecular weight” and mp is the proton mass. For example,
pure atomic hydrogen has µ = 1, a mixture (by mass) of 75% Hydrogen and 25%
Helium, both in atomic form, has µ = 1.23 and pure, fully ionised Hydrogen
plasma has µ = 0.5. Sometimes we will have to deal with the partial pressure of
electrons alone, and then we would have to define a “mean molecular weight per
electron” µe. For a fully ionised hydrogen plasma µe is 1.0.

If the gas is relativistic then the appropriate correction to the mass of a particle is
to be taken into account. For ε much larger than the rest energy the mass can be
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written as ε/c2, which means that ρ = uk/c2 and

P =
1
3
ρc2

independent of temperature. However there could be an intermediate situation
where, say in a mixture of electrons and ions, the average energy per particle is
larger then 0.5 MeV, high enough for electrons to go relativistic, but is much less
than a GeV, so ions are non-relativistic. In this situation we can still get the partial
pressure of the electrons by setting ne = ρ/µemp, where ne is the electron number
density.

Let us now look at situations where quantum statistics becomes important. This
pertains to matter at high density where the Fermi statistics of electrons, protons
or neutrons play a role. For a Fermi gas, Pauli’s exclusion principle demands that
only one particle can occupy one quantum state. Per unit physical volume, the
number of states in phase space between momentum 0 to p is 2× 4πp3/3h3 where
the factor 2 comes from spin degeneracy. The value of p for which the number of
states becomes equal to the actual number of particles present in that unit volume
is called the “Fermi momentum” pF and the corresponding energy is called the
“Fermi Energy” εF . This Fermi energy plays the role of the chemical potential µ
in the expression for Fermi-Dirac distribution. Clearly,

pF =

(
3h3

8π

)1/3

n1/3

where n is the number density of the species in question. The Fermi energy

εF =
p2

F

2m
∝ n2/3 (non-relativistic)

or
εF = cpF ∝ n1/3 (relativistic)

m being the rest mass of a particle.

The quantum statistics of the gas will manifest itself once µ(= εF) becomes of
the order of kT or higher. This is the case in the interior of compact stars such
as white dwarfs or neutron stars. Such a gas is called “degenerate”. In the limit
T → 0 the pressure does not vanish. This is called the “degeneracy pressure”.
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Figure 1: Fermi distributions for translational degrees of freedom in 3 dimen-
sions, for three different values of εF/kT : 0.01, 0.1 and 1.0 (blue lines). Panel
(a) compares these three distributions, and the other three panels compares them
with the Boltzmann distribution at the corresponding temperatures (red lines): (b)
kT = 0.01εF , (c) kT = 0.1εF and (d) kT = εF .

Figure 1 shows a comparison between Fermi distribution at different temperatures
and their Boltzmann counterparts.

At kT � εF , the gas behaves essentially as a zero temperature gas, with states
up to the Fermi level all filled. The energy density uk in this configuration is then
proportional to nεF , and hence

P ∝ n5/3 (non-relativistic)

P ∝ n4/3 (relativistic)
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As above, one can express n in terms of the mass density to get

P ∝
(
ρ

µmp

)5/3

(non-relativistic)

If the particles that are relativistic are also the main source of mass, then according
to the general result above P ∝ ρ, but in the case where degeneracy pressure comes
from relativistic electrons and the mass from non-relativistic protons, one gets

Pe ∝
(

ρ

µemp

)4/3

(relativistic)

The thermal distribution of radiation is described by the Blackbody function

uν =
8πhν3

c3

1
ehν/kT − 1

which gives the spectral energy density at a frequency ν. The corresponding spe-
cific intensity (energy flowing per unit area per unit time per unit solid angle per
unit frequency interval) at that frequency is given by Iν = cuν/4π. Integration over
frequencies gives u = aT 4, where a is the radiation constant. Total flux crossing
an unit area similarly works out to be σT 4 where σ = ac/4 is the Stefan’s con-
stant. Radiation exerts pressure too, and since photons are massless, the situation
is always relativistic. Hence the pressure of thermal radiation is given by

Prad =
1
3

aT 4

Unlike in the cases of massive particles discussed above, the energy density here
goes as fourth power of temperature since, although the energy per photon remains
∼ kT , the number density of photons goes as T 3. This is because being particles
of zero rest mass, photons can be created and destroyed freely. As seen in figure 2,
this makes the black body curve at a higher temperature completely envelope that
at a lower temperature. In the case of massive particles the thermal distribution
at a higher temperature would intersect that at a lower temperature to ensure the
conservation of particle number. In other words, the blackbody distribution is
a one-parameter family of curves, determined solely by temperature, while the
thermal distribution of massive particles is a two-parameter family, determined
both by temperature and particle number.
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Figure 2: Distribution of energy density uν of Blackbody Radiation shown for
three different temperatures.

In the special case of the distribution of massive particles where kT is much larger
than the rest energy of the particles, and the distribution is in thermal equilibrium
with radiation at the same temperature, particles and antiparticles of this species
can be created and destroyed freely, and even for these massive particles then the
energy density u would go as T 4.


