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BLACK HOLES AND QUANTUM GRAVITY ?

Black Holes are, as Chandrasekhar used to say:
“... the most perfect objects there are in The Universe: the
only elements in their construction are our concepts of space
and time. Since GR predicts a single family of solutions, they
are the simplest as well.” They are the crown of classical
physics in terms of their simplicity and beauty.

But, Bekenstein and Hawking told us that :

i) Black Holes satisfy some ‘thermodynamic-like laws’.

δM =
κ

8πG
δA ⇒ M ↔ E, κ ↔ T , A ↔ S
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ii) When one invokes quantum mechanics (~) then
something weird happens:

E = M

T =
κ ~
2π

,

and

S =
A

4 G~

The black holes appear to have thermodynamic prop-
erties!
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But, what are the underlying degrees of freedom re-
sponsible for entropy?

The standard wisdom is that only with a full mar-
riage of the Quantum and Gravity will we be able to
understand this.

Different approaches:

• String Theory
• Causal Sets
• Entanglement Entropy
• Loop Quantum Gravity
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MOTIVATION

• How do we characterize black holes in equilibrium?

• What are quantum horizon states?

• Which states should we count?

• How does the entropy behave?

• Large BH: Bekenstein-Hawking entropy

• What happens when we look at small BH’s?
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PLAN OF THE TALK

1. Some History

2. Classical Preliminaries

3. Quantum Preliminaries

4. Quantum Horizon Geometry

5. Counting and Entropy

6. New Results: Counting by Numbers

Work of many people, including A. Ashtekar, J. Baez, AC, M. Domagala, J. Lewandowski,

K. Meissner, J. Engle, E. Fernandez-Borja, J. Diaz-Polo, K. Krasnov, R. Kaul, A. Ghosh,

P. Majumdar, P. Mitra, C. Rovelli, H. Sahlmann and more ...
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1. SOME HISTORY

• 94’ The area operator is defined (Smolin & Rovelli)

• 96’ Krasnov and Rovelli consider punctures as horizon degrees
of freedom.

• 97’ Isolated Horizon boundary conditions understood.

• 99’ Quantum Horizon Geometry fully understood (ABK).

• 00’ Logarithmic corrections computed

• 02’ Possible relation to QNM proposed (SO(3) vs SU(2))

• 04’ Error in original ABK computation found. A new count-
ing proposed (DLM)

• 05’- Several new countings proposed (GM, Dreyer et al, . . .)

• 06’ Direct counting of small BH states. New structures found.
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The Beginning

Physically, one is interested in describing black holes in equilib-
rium. That is, equilibrium of the horizon, not the exterior. Can
one capture that notion via boundary conditions?

Yes! Answer: Isolated Horizons

Isolated horizon boundary conditions are imposed on an inner
boundary of the region under consideration.

The interior of the horizon is cut out. In this a physical bound-
ary?
No! but one can ask whether one can make sense of it:

What is then the physical interpretation of the boundary?
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• The boundary ∆, the 3-D isolated horizon, provides an effec-
tive description of the degrees of freedom of the inside region,
that is cut out in the formalism.
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• The boundary conditions are such that they capture the in-
tuitive description of a horizon in equilibrium and allow for a
consistent variational principle.

• The quantum geometry of the horizon has independent de-
grees of freedom that flctuate ‘in tandem’ with the bulk quantum
geometry.

• The quantum boundary degrees of freedom are then respon-
sible for the entropy.

• The entropy thus found can be interpreted as the entropy
assigned by an ‘outside observer’ to the (2-dim) horizon S = Σ∩∆.

• Interpretational issues: is this to be regarded as the entropy
contained by the horizon? Is there some ‘holographic principle’
in action? Can the result be associated to entanglement entropy
between the interior and the exterior?, etc.
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ISOLATED HORIZONS

An isolated horizon is a null, non-expanding horizon ∆ with
some notion of translational symmetry along its generators. There
are two main consequences of the boundary conditions:

• The gravitational degrees of freedom induced on the horizon
are captured in a U(1) connection,

Wa = − 1
2 Γi

a ri

• The total symplectic structure of the theory (and this is true
even when matter is present) gets split as, Ωtot = Ωbulk + Ωhor with

Ωhor =
a0

8π G

∮
S

dW ∧ dW ′

• The ‘connection part’ and the ‘triad part’ at the horizon must
satisfy the condition, Fab = − 2π γ

a0
Ei

ab ri, the ‘horizon constraint’.
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CONSTRAINTS

The formalism tells us what is gauge and what not. In particular,
with regard to the constraints we know that:

• The relation between curvature and triad, the horizon con-
straint, is equivalent to Gauss’ law.

• Diffeomorphims that leave S invariant are gauge (vector field
are tangent to S).

• The scalar constraint must have N |hor = 0. Thus, the scalar
constraint leaves the horizon untouched; any gauge and diff-
invariant observable is a Dirac observable.

In the quantum theory of the horizon we have to implement
these facts.
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QUANTUM THEORY: THE BULK

A canonical description:

Ai
a SU(2) connection ; Ea

i triad

with Ai
a = Γi

a − γ K i
a. Loop Quantum gravity on a manifold with-

out boundary is based on two fundamental observables of the
fundamental variables :

Holonomies, he(A) := P exp(
∫

e A)

and

Electric Fluxes, E(f, S) :=
∫

S dSabEi
ab f i

The main assumption of Loop Quantum Gravity is that these
quantities become well defined operators. LOST Theorem: There
is a unique represntation on a Hilbert space of these observabes
that is diffeomorphism invariant.
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Hilbert space:

HAL = ⊕graphsHΥ = Span of all Spin Networks |Υ,~j, ~m〉 (1)

A Spin Network |Υ,~j, ~m〉 is a state labelled by a graph Υ, and
some colourings (~j, ~m) associated to edges and vertices.
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The spin networks have a very nice interpretacion. They are the
eigenstates of the quantizad geometry, such as the area operator,

Â[S] · |Υ,~j, ~m〉 = 8π`2
Plγ

∑
edges

√
ji(ji + 2) |Υ,~j, ~m〉 (2)

One sees that the edges of the graph, excite the quantum geom-
etry of the surface S at the intersection points between S and
Υ.
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HORIZON QUANTUM THEORY

Total Hilbert Space is of the form:

H = HV ⊗HS

where HS, the surface Hilbert Space, can be built from Chern
Simons Hilbert spaces for a sphere with punctures.

The conditions on H that we need to impose are: Invariance
under diffeomorphisms of S and the quantum condition on Ψ:(

Id⊗ F̂ab +
2π γ

a0
Êi

ab ri ⊗ Id

)
· Ψ = 0

Then, the theory we are considering is a quantum gravity
theory, with an isolated horizon of fixed area a0 (and multiple-
moments). Physical state would be such that, in the bulk satisfy
the ordinary constraints and, at the horizon, the quantum hori-
zon condition.
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ENTROPY

We are given a black hole of area a0. What entropy can we assign
to it? Let us take the microcanonical viewpoint. We shall count
the number of states N such that they satisfy:

• The area eigenvalue 〈Â〉 ∈ [a0 − δ, a0 + δ]

• The quantum horizon condition.

The entropy S will be then given by

S = lnN .

The challenge now is to identify those states that satisfy the two
conditions, and count them.
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CHARACTERIZATION OF THE STATES

There is a convenient way of characterizing the states by means
of the spin network basis. If an edge of a spin network with label
ji ends at the horizon S, it creates a puncture, with label ji. The
area of the horizon will be the area that the operator on the bulk
assigns to it: A = 8πγ`2

Pl

∑
i

√
ji(ji + 1).

Is there any other quantum number associated to the punctures
pi? Yes! the eigenstates of Êab that are also half integers mi, such
that −|ji| ≤ mi ≤ |ji|. The quantum horizon condition relates
these eigenstates to those of the Chern-Simons theory. The re-
quirement that the horizon is a sphere (topological) then imposes
a ‘total projection condition’ on m′s:∑

i

mi = 0
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A state of the quantum horizon is then characterized by a set of
punctures pi and to each one a pair of half integer (ji, mi).

If we are given N punctures and two assignments of labels (ji, mi)
and (j′i, m

′
i). Are they physically distinguishable? or a there some

‘permutations’ of the labels that give indistinguishable states?

That is, what is the statistics of the punctures?

As usual, we should let the theory tell us. One does not postu-
late any statistics. If one treats in a careful way the action of
the diffeomorphisms on the punctures one learns that when one
has a pair of punctures with the same labels j and m, then the
punctures are indistinguishable and one should not count them
twice. In all other cases the states are distinguishable.
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THE COUNTING

We start with an isolated horizon, with an area a0 and ask how
many states are there compatible with the two conditions, and
taking into account the distinguishability of the states.
First Approach: Count just the different configurations and for-
get about

∑
i mi = 0. Thus, given (n1/2, n1, n3/2, . . . , nk/2),we count

the number of states:

N =
N !

Πj (nj!)
Πj (2j + 1)nj (3)

Taking the large area approximation A >> `Pl, and using the Stirling
approximation. One gets:

S =
A

4`2
Pl

γ0

γ
(4)

with γ0 the solution to
∑

j(2j + 1)e2π γ0

√
ji(ji+1) = 1.

(and
∑

j 2 e2π γM

√
ji(ji+1) = 1 for DLM).
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The introduction of the projection constraint introduces a first
correction to the entropy area relation as

S =
A

4`2
Pl

γ0

γ
− 1

2
ln(A) + . . .

• If we want to make contact with the Bekenstein-Hawking we
have to chose γ = γ0.

• The coefficient of the logarithmic correction seems to be uni-
versal.

• The formalism can be generalized to more general situations,
and the result is the same:

– Maxwell, Dilatonic and Yang Mills Couplings

– Cosmological, Distortion and Rotation

– Non-minimal Couplings
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COUNTING BY NUMBERS

We tell a computer how to count for a range of area a0 at the
Planck scale.

• How does the incorporation or not of the projection constraint∑
i mi = 0 affect the number of states?

• Can we see for such small black holes that the entropy tends
to be a linear function of the area?

• Can we say anything about the Barbero-Immirzi parameter?

• Is the entropy area relation for such small black holes like
anything we had imagined?

• Are there new structures found?
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.

In the analytical computations, the introduction of the projec-
tion constraint introduces a first correction to the entropy area
relation as

S = αA− 1

2
ln(A) + . . .

We then subtracted the two plots and found:
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What we see in that, on average, the entropy tends to the ana-
lytical relations.

What is the nature of the oscillations? What we see is that the
frequency of the oscillations is independent of the size δ of the
interval used in the counting.

What about the Immirzi parameter?

We found the Barbero-Immirzi parameter from our counting (by
interpolating the curve) is very close to the analytical value:

γ0 and γM (depending on the counting).

For Planck scale horizons, Barbero-Immirzi parameter and the
logarithmic correction are recovered.

But what about the oscillations ?
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ENTROPY QUANTIZATION

Both the oscillations found with a large value of δ as well as these
structures in the ‘spectrum’ posses the same periodicity

δA0 ≈ 2.41 `2
p

Is there any physical significance to this periodicity?

we chose the interval:

2 δ = ∆A0

With this choice, the plot of the entropy vs area becomes:
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WHAT DOES THIS MEAN?

Instead of oscillations, Entropy seems to increase in discrete
steps.

Furthermore, the height of the steps seems to approach a con-
stant value as the area of the horizon grows, thus implementing
in a rather subtle way the conjecture by Bekenstein that entropy
should be equidistant for large black holes.

This result is robust: Independent of the counting!

Is there any way of understanding this? Maybe

While the constant number in which the entropy of large black
holes ‘jumps’ is:

∆S 7→ 2 γ0 ln (3)
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Some recent analytic understanding (Sahlmann, Fernandez-Borja,
Diaz-Polo)
• One can think of the states organized in bands.
• One uses the analytic nj distribution that maximazes degen-

eracy.
• One can find the ‘average area’, for each band associated with

this maximum degeneracy configuration:

∆A =
8πγ

∑
s

√
s(s + 2)(s + 1)e−2πγ0

√
s(s+2)

3(
∑

s s(s + 1)e−2πγ0

√
s(s+2)) + 2

with
∆A− γ 8 ln(3)

∆A
≈ 0.003%

Very exciting possibility!

STAY TUNED!
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CONCLUSIONS

• Isolated Horizons provide a consistent framework to incorpo-
rate black holes.

• One can consistently quantize the theory

• Entropy is finite and dominant term linear in Area.

• Any black hole of interest is included

• Unexpected features appear by considering Planck size hori-
zons.

• Contact with Bekenstein’s heuristic model, and Mukhanov-
Bekenstein in a subtle manner

• Is there more?
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OUTLOOK

• We have not dealt with the singularity

• Ashtekar-Bojowald ‘paradigm’ for and extended quantum space-
time

• Based on expectations about singularity resolution coming
from LQC

• Hawking radiation?

• Lost Information Puzzle

• Full Theory: How to specify quantum black holes from the
full theory?
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