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Space-like and Null Singularities
• Space-like or Null singularities are difficult to understand –

these are singularities which you cannot “see” and 
therefore cannot  avoid.

• They usually signify a beginning or end of time
• This is hard to think about in the usual context of quantum 

mechanical time evolution
• In this talk – will summarize one approach to gain insight 

using dual descriptions of the AdS/CFT type



Usual AdS/CFT
• IIB string theory in asymptotically                       space-times 

is dual to  large-N expansion of       =4   SYM theory on the 
boundary with appropriate sources or excitations.

• The usual relationship between the dimensionless 
parameters on the two sides are

• Where          is the string coupling,             is the square of 
the Yang-Mills coupling,       is the string length and      is 
the AdS length scale
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Usual AdS/CFT
• IIB string theory in asymptotically                       space-times 

is dual to  large-N expansion of       =4   SYM theory on the 
boundary with appropriate sources or excitations.

• The usual relationship between the dimensionless 
parameters on the two sides are

• Usual notions of space-time are valid only in the regime 
where supergravity  approximation is valid, i.e.

• For generic values of the parameters , the gauge theory 
hopefully continues to make sense, though there is no 
interpretation in terms of General Relativity. 

• Could  this  happen  near  singularities ?
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A Scenario
• At early times, start with 

the ground state of the 
gauge theory with large ‘t 
Hooft coupling.

• The physics is now well 
described by supergravity 
in usual                          
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A Scenario
• Now turn on a time 

dependent source in the 
Yang-Mills theory which 
deforms the lagrangian.
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A Scenario
• Now turn on a time-

dependent source in the 
Yang-Mills theory which 
deforms the lagrangian.

• This corresponds to turning 
on a non-normalizable mode 
of the supergravity in the 
bulk, thus deforming the 
original t
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A Scenario
• The gauge theory evolves 

according to the deformed 
hamiltonian
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A Scenario
• The gauge theory evolves 

according to the deformed 
hamiltonian

• At sufficiently early times 
the supergravity 
background evolves 
according to the classical 
equations of motion
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A Scenario
• At later times, the 

curvatures or other 
invariants of supergravity 
start becoming large

• If we nevertheless  insist  
on the supergravity 
solution we encounter a 
singularity at some finite
time

• Beyond this time, it is 
meaningless to evolve any 
further.
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A Scenario
• However, the gauge theory 

could be still well defined 
at this time.

• And if we are lucky enough 
the gauge theory may be 
evolved beyond this point

• At much later times, the 
source could weaken 
again and one may regain 
a description in terms of 
supergravity
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Models implementing this 
Scenario

• We will try to implement  this scenario by turning on 
sources in the gauge theory which correspond to time 
dependent couplings             

• The gauge theory would still live on flat space-time and 
there would be no other source.

• We will  choose  the gauge theory coupling to be bounded 
everywhere and  becoming  vanishingly  small  at  some  
time.

t



• In supergravity this would correspond to a metric which is 
constrained to be FLAT on the boundary and a dilaton 
whose boundary value matches the gauge theory coupling.

At early times this should be 



Null Solutions
• The best controlled solutions  of this type are those with 

null rather  than  spacelike  singularities

• Where             is the dilaton which is a function of         
alone.

• These solutions have been independently obtained and 
studied by 

Chu and Ho,  JHEP 0604 (2006) 013
Chu and Ho,  hep-th/0710.2640



Null Solutions
• The best controlled solutions  of this type are those with 

null rather  than  spacelike  singularities

• Where             is the dilaton which is a function of         
alone.

• This function may be chosen freely..in particular we can 
choose this function of the desired form.

• For example,
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Null singularity

• There is a singularity  at 
. Null geodesics

where

reach this at finite affine 
parameter if

is finite.
However, the singularity 
weakens as we approach 
the boundary
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• These solutions are in fact related to

where                                                     
by coordinate  transformations

• This  is  an example  of the general  fact  that  a  Weyl 
transformation  on  the  boundary  is  equivalent  to  a  
special  class  of  coordinate  transformations  in  the  bulk -
the Penrose-Brown-Hanneaux  (PBH) transformations.
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A more general class
• In fact there is a more general class of solutions of the 

following form 

• The 4d metric                  and the dilaton              are 
functions of the four coordinates and the 5-form field 
strength is standard.

• This is a solution if                                       and 

• Thus a solution of 3+1 dimensional dilaton gravity may be 
lifted to be a solution of 10d IIB supergravity with fluxes.      



• We will consider solutions of this type where the 4d metric     
is conformal to flat space

The connection between Weyl transformations on the 
boundary and and PBH transformations then ensures that 
there is a different foliation of the AdS space-time in which 
the boundary is flat – and all we have is a nontrivial dilaton.

• We will always define the dual gauge theory to live on this 
flat boundary.



Kasner-like Solutions
• The easiest form of time dependent solution is the lift of a 

usual 4d Kasner universe

• This has a spacelike curvature singularity at t=0.
• The effective string coupling vanishes here – as required.
• However the coupling diverges at infinite past and future.
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• Nevertheless it is instructive to see what the dual gauge 
theory looks like. This can be explicitly worked out for

• In this case the 4d metric is conformal to flat space  

• The exact PBH transformation may be written down and 
the metric which has a flat boundary is



FRW-type solutions
• Time dependent solutions with bounded coupling have 3+1 

dimensional slices which are conformal to FRW universes 
with k=-1. 

• The 3+1 dimensional slice is in fact conformal to part of 
Minkowski space. Defining new coordinates



• This solution becomes

• The original space-time is thus conformal to the past 
light cone part of Minkowski space

singularity



• This solution becomes

• The original space-time is thus conformal to the past 
light cone part of Minkowski space

• Singularity is now at 

• This metric can be 
extended to the whole

plane singularity



• It  is  useful  to  write  this  solution  in  slightly  different  
coordinates  

• In   these  coordinates  the  conformal  factor  depends  on  
a single  time  variable

• The dilaton is now 

• The   spacelike  singularity  is  now  at   
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• We should be able to find PBH transformations to a 
foliation of this spacetime which leads to a flat metric.

• In this case, we have not been able to determine the exact 
form of the transformations. However all one needs is the 
transformation near the boundary. We will, therefore, 
determine this in an expansion around the boundary.

• The metric near the boundary becomes

• The  boundary  metric  is  now  explicitly  flat.               



• In terms of these new coordinates the spacelike singularity 
appears at                 and the asymptotic past is                   

• The effective string coupling is bounded, decreasing from a 
finite value in the past to a zero value at the singularity.

• Therefore, the dual gauge theory lives on flat space and 
has a time dependent coupling constant which vanishes at 
some finite time      .
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• In terms of these new coordinates the spacelike singularity 
appears at                 and the asymptotic past is                   

• The effective string coupling is bounded, decreasing from a 
finite value in the past to a zero value at the singularity.

• At late times the ‘t Hooft coupling becomes small and 
supergravity is meaningless.  This is when the singularity 
appears in the bulk.



The Energy-Momentum 
Tensors

• The holographic stress tensor of these backgrounds 
provide insight into the nature of the quantum state

• In the regime where supergravity is reliable, this evaluates 
the energy momentum tensor of the dual gauge theory

• For backgrounds which are asymptotic to                       at
early times we can use this calculation to see whether the 
initial state is reasonable.

• We will compute this using the method of covariant 
counterterms
(Henningson and Skenderis ;
Balasubramanian and Kraus ;
Fukuma, Matsura and Sakai;…………….. )



• Consider a 5d metric of the form

• The cutoff boundary is taken to be at 
• With  appropriate counterterms the holographic stress 

tensor is given by

where           is the extrinsic curvature of the boundary,          
is the induced metric 

and         is the Einstein tensor computed from the induced 
metric.



• Different  choices  of  the  boundary  will  lead to different 
results. In  the  dual  gauge  theory  this  reflects  the  fact  
that different  regularizations  correspond  to  different  
definitions of  the  renormalized  Energy Momentum  
tensors.
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• Different  choices  of  the  boundary  will  lead to different 
results. In  the  dual  gauge  theory  this  reflects  the  fact  
that different  regularizations  correspond  to  different  
definitions of  the  renormalized  Energy Momentum  
tensors.

• For the backgrounds we considered,  there is a choice of 
coordinates where the boundary metric                and the
dilaton           depend only on the boundary coordinates. 

• In these  coordinates  the  holographic  stress  tensor  
vanishes  for  all  backgrounds  at  all  times.

• However  the  gauge  theory  is  best  defined  in  a choice  
of  boundary  where  the  boundary  metric  is  flat.

• In  this  choice  of  boundary  the  result  depends  on  the   
specific  background.
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EM Tensor : Null Solutions
• For the null solutions, the energy momentum tensor 

vanishes even for a choice of flat boundary.
• This ensures that in the gauge theory we are starting off 

with the vacuum state at early light cone times
• The fact that the em tensor continues to vanish at all later 

times is probably a reflection of the fact that for 
backgrounds with a null isometry there is no particle 
production due to the source.

• In particular, the conformal anomaly vanishes.  The  
general  expression  for  the  anomaly  agrees  with  the  
field theory calculation  of  Fradkin and Tseytlin and Liu 
and Tseytlin – and the holographic calculation of Nojiri and 
Odinstov
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• The energy momentum tensor is given by
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• The  energy  momentum  of  the  dual  field  theory,           
is related to the holographic energy momentum tensor by 
the relation 

And we have use the relationship between the 5d Newton 
constant and the parameters of the gauge theory

This yields

and the conformal anomaly is
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• At early times,                        the bulk background is                 
and  the                     vanishes 

• This signifies  that  the  initial  state  is  indeed  the  
vacuum.

• As the source builds up, the energy momentum tensor 
picks up. 

• If we extrapolate the bulk calculation to the time of the 
singularity,                 , this  quantity  diverges

• However, this  is  precisely  the  time  when  the  bulk  
calculation has no significance in the gauge theory, which 
is now weakly coupled.
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Properties of the gauge theory
• For the null backgrounds,  the dual gauge theory is easier 

to analyze.
• Even though the theory lives on flat space, the dilaton 

factor is in front of the kinetic term and diverges at the time 
of bulk singularity.

• Normally one would absorb the coupling factor by a field 
redefinition so that only nonlinear terms involve the 
coupling.

• However in this case the factor is a function of       . Such a 
redefinition would introduce extra terms in the quadratic 
terms rendering the propagator non-standard 



• Luckily , we can work in a light cone gauge                . 
• In this gauge we can perform the following field 

redefinitions

• The constraint which determines         is identical to the 
standard constraint



• Luckily  we can work in a light cone gauge                . 
• In this gauge we can perform the following field 

redefinitions

• The constraint which determines         is identical to the 
standard constraint

The quadratic part of the action of the dynamical fields 
becomes standard – extra term is a total derivative           



• Luckily  we can work in a light cone gauge                . 
• In this gauge we can perform the following field 

redefinitions

• The constraint which determines         is identical to the 
standard constraint

The quadratic part of the action of the dynamical fields 
becomes standard – extra term is a total derivative           



• Luckily  we can work in a light cone gauge                . 
• In this gauge we can perform the following field 

redefinitions

• The constraint which determines         is identical to the 
standard constraint

The quadratic part of the action of the dynamical fields 
becomes standard – extra term is a total derivative           

The nonlinear terms contain positive powers of 



• Luckily  we can work in a light cone gauge                . 
• In this gauge we can perform the following field 

redefinitions

• The constraint which determines         is identical to the 
standard constraint

The quadratic part of the action of the dynamical fields 
becomes standard – extra term is a total derivative           

The nonlinear terms contain positive powers of 
• This factor is bounded and goes to zero in the potentially 

problematic region. 



• There are other gauge choices which are useful. Chu and 
Ho use a gauge of the form

• They have used this gauge to calculate the effective action 
.

• This gauge could be more useful since it may avoid some 
of vexing issues associated with light cone gauge and light 
front evolution.



• For time dependent couplings this redefinition of fields does 
not lead to a standard kinetic term in usual  gauges. This 
typically leads to singular terms, since

• However, just like the null solutions, this could be a gauge 
artifact.  We have not yet found a suitable gauge to display 
this.



• With space-time dependent couplings loop diagrams can 
have divergences in addition to usual loop UV divergences. 
While the latter can be dealt with usual renormalization –
the meaning of the former is not clear.

• However, when the coupling
depends on only one null coordinate
bounded everywhere
differs from a constant only in a small region 

these additional divergences are absent.
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• Since the coupling vanishes near the singularity,  we could 
get some intuition from perturbation expansion.

• For null backgrounds, this is simpler since all the effects of 
space-time dependence reside in the non-linear terms, 
which may be treated perturbatively.

• Formally, usual UV divergences coming from integrals over 
loop momenta can be renormalized. In this case

• Where                        is a local functional of  
However, the resulting quantum effective action can have 
additional  divergences even after this renormalization.



• Consider for example a        scalar field theory with a 
space-time dependent coupling             which we take to be 
general for the moment.

• In terms of the fourier transform of the renormalized 
coupling

the one loop contribution  is

where            is the fourier transform of the background 
field.
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the usual momentum conserving delta function



• If       was  a constant (in position space), this would lead to 
the usual momentum conserving delta function

• However in our case the integral over     is non-trivial and 
may lead to a divergent answer.

• This divergence would usually come from large values of     
- so that we can ignore the external momenta 



• When the coupling depends on a single  null  coordinate          
this expression simplifies and the potential for divergence 
reduces as well. Writing

the relevant term becomes

• For the kind of couplings we have been considering – it is 
easy to find situations when this last integral is convergent.

• This is because the coupling differs from a constant only in 
a small region near
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values of the momenta
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• For a coupling which is of 
the following simple form

The fourier transform dies 
away rapidly at large 
values of the momenta

• This guarantees that the 
integral is convergent.

• For smooth solutions of 
this general form, the 
result continues to hold

)(kh



Features of the Worldsheet
• In these examples, the Yang-Mills coupling becomes 

vanishingly small at the time when the bulk becomes 
singular.

• According to the usual wisdom of AdS/CFT one would 
expect that stringy effects become large.

• Since the string coupling in the bulk also vanishes at this 
time one might also expect that classical stringy effects 
could bring about the “resolution” of this singularity.

• The meaning of this is not entirely clear. In fact our point is 
that a closed string description is useless at this time – we 
should replace this by a perturbative gauge theory

• Nevertheless it may be useful to look at the worldsheet 
theory.



• Rewrite the metric in terms of coordinates

• The invariant form of the action is, with

• The string metric            is related to the Einstein frame 
metric by 

• Now fix a light cone gauge

• And a further choice of the worldsheet     coordinate



• The final form of the worldsheet action is

• At early times this reproduces the known form in 
• Since                   as                      ,     the       oscillator   

states become light.
• However,                 diverges  at              

Thus the       oscillator states decouple at this time.
• In a sense we are left with a very floppy tensionless string 

which can, however, oscillate only in two transverse 
dimensions.



String and Brane Excitations
• Clearly,  higher massive modes of the fundamental string 

are excited copiously as we approach the singularity.
• It turns out that other branes are excited as well.
• We have studied this by considering the Penrose limit of 

the null backgrounds and constructing Matrix Theory in the 
resutling pp-wave

• The Matrix theory shows spherical D-branes (which appear 
as fuzzy solutions of the model) grow in size as we 
approach the singularity.
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Epilouge
• We have constructed toy models of cosmology which have 

natural gauge theory duals.
• In the regions where the bulk solution becomes singular –

and therefore cannot be trusted, the gauge theory dual 
becomes weakly coupled and therefore is not expected to 
have a gravity dual in any case

• For null singularities, preliminary studies of the gauge 
theory seem to suggest that the gauge theory evolution 
may indeed well defined.

• For space-like singularities, things are less clear – but now 
at least we have examples where the issue can be 
analyzed.
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• The real question is whether the time evolution of the 
gauge theory allows us to evolve across what appears to 
be singular from the dual gravity picture.

• If this is indeed true we will have a truly attractive scenario 
where the large number of additional degrees of freedom 
which are typically present in holographic descriptions help 
“resolve” singularities.

• Even if this is not true, we would like to know the precise 
signatures of cosmological singularities in the gauge 
theory.

• In any case, the emergent nature of space-time in string 
theory has interesting things to say about singularities.



Thank you


