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• Understanding gravity in the weak and strong regime

e.g., comparing with post-Newtonian theory; grasping the transition inspiral

to merger to ringdown

• Detecting gravitational waves and extracting unique information

e.g., building analytic templates

• Making astrophysical predictions

e.g., recoil velocity of merging black holes; how supermassive black holes formed
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Modeling the long inspiral phase using PN theory

[Blanchet, Damour, Iyer, Faye, Deruelle; Wagoner, Will, Wiseman, Kidder, ...]

• In general relativity radiation-reaction effects appear at order

∼ v5/c5 beyond the Newtonian force law

m dv

dt = FNewt + · · · +
(

v
c

)5
FRR

• Throughout the inspiral TRR ≫ Torb ⇒ natural adiabatic parameter

ω̇
ω2 = O

[

(

v
c

)5
]

• PN expansion: formal expansion in 1/c when c → +∞

• For compact bodies, such as neutron stars and black holes,

v2

c2 ∼
Gm
c2r

∼
RS
r ≪ 1
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Waveforms in the adiabatic approximation

• Inspiral as an adiabatic sequence of circular orbits:

h(t) ∝ Q̈ ∝
v2

c2 cos 2ϕ ∝
(

GM ω
c3

)2/3
cos 2ϕ

• Energy-balance equation:
dE(v)

dt = −F (v)

E(v) → center-of-mass energy F (v) → gravitational-wave energy flux

E(v) and F (v) known as a PN expansion in v/c = (GMω/c3)1/3

⇒ ω̇ = −
F (ω)

[dE(ω)/dω] ⇒ ϕGW(t) = 2ϕ(t) = 1/π
∫

ω dt
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Effective-one-body and Padé resummation
[AB & Damour 99]
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Real description

µνg eff

Effective description

µ

• Resum so that known test

mass limit results are

recovered

• Resum the PN expansion

assuming that the equal-mass

limit is a η-deformation of

the test-mass limit

η = m1 m2/M2

0 ≤ η ≤ 1/4

• Padé resummation of the

energy flux F

[Damour, Iyer & Sathyaprakash 97]

Ereal = f(Eeff)
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Features of the GW signal emitted by a test-particle falling radially
in a Schwarzschild black hole

d2

dr2∗
Zl + (Vl − ω2)Zl = Sl

Zl → perturbation Sl → source

Outgoing field

... part of the energy produced in the strong-burst region is stored in the

resonant cavity of the geometry, and then slowly released in ringdown modes.

[Press 71; Davis, Ruffini, Press & Price 71; Davis, Ruffini & Tionmo 72]
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Full waveform as predicted by the EOB-Padé model

• The plunge (∼ 1.5 GW cycles) is a smooth continuation of the inspiral phase

• The transition merger to ringdown was assumed very short

• One single QNM matched using MBH = ELR = 0.976 M , aBH = JLR/E2
LR = 0.77
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[AB & Damour 99, 00; Damour, Jaranowski & Schafer 00; Damour 01; AB, Chen & Damour 06]
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Numerical simulations of equal-mass binary: one dominant frequency
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[AB, Cook & Pretorius 06]

• ωc ⇐ from the coordinate separation

• ωD2 = −1
2Im

h

Ċ22
C22

i

⇐ from the wave
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When the ringdown phase starts. Higher overtones.

[AB, Cook & Pretorius 06; see also Berti et al. 07]
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The (plunge and) merger

[AB, Cook & Pretorius 06]
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[AB, Cook & Pretorius 06]• Short transition merger–ringdown

• Energy and angular-momentum quickly released during merger
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Extremely accurate NR simulation using spectral methods

• Equal-mass non-spinning black-hole binary Caltech-Cornell collaboration
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• During the first 15 GW cycles all PN

models agree with NR within 0.05 rad

• Different PN models differ by the way

of solving:

ω̇ = −
F (ω)

[dE(ω)/dω]
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Comparison PN-adiabatic models and extremely accurate numerical
simulations

• Equal-mass non-spinning black-hole binary Caltech-Cornell collaboration

• Later on the PN models accumulate a dephasing of few rads, except for one model

[see also Nasa-Goddard 07; Jena 07]
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Comparing NR and EOB waveforms: effectualness

[AB, Cook & Pretorius 06; see also Pan, AB & NASA-Goddard 07]
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• Fundamental QNM mode and two overtones included

• overlap >∼ 0.97 maximizing on binary parameters, time-of-arrival, initial phase
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Improving EOB model using NR as guide

[AB, Pan & NASA-Goddard 07] [Damour, Iyer, Jaranowski & Sathyaprakash 03]

• Ap4PN(r) = A3PN(r) + λ η

r5
, λ = 60

• Apply Padé resummation to ensure

presence of LSO and light ring

• Analytic inspiral/ringdown matching point

M ωmatch = 0.133 + 0.183 η + 0.161η2

• QNM frequency and decay time depend

only on MBH/M and af/MBH

MBH
M = 1 + (

p

8/9 − 1) η − 0.498 η2

af
MBH

=
√

12 η − 2.90 η2
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NR and EOB waveforms for equal-mass binary: faithfulness

[AB, Pan & NASA-Goddard 07]• Phase difference in GW cycles of ∼ 5%

• overlap >∼ 0.98 maximizing only on time-of-arrival and initial phase
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NR and EOB waveforms for unequal-mass binary: faithfulness

[AB, Pan & NASA-Goddard 07]• Phase difference in GW cycles of ∼ 8%

• overlap >∼ 0.98 maximizing only on time-of-arrival and initial phase
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[talk by Ajith on frequency-domain template family for inspiral-merger-ringdown]
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Comparison Regge-Wheeler-Zerilli and EOB in the test-mass limit

[Damour, Nagar & Tartaglia 06; Damour & Nagar 07]
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• Several improvements: resummed higher-order amplitude corrections; deviations

from quasi-circular motion; matching inspiral to ringdown on a comb instead of a point
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What is the final black hole spin and mass?

[Berti et al. 07; Damour & Nagar 07; AB et al. 07; Pollney et al. 07; Boyle et al. 07; Sperhake et al. 07]

•
af

M =
LISCO

orb (af ,η)

M2 + S1
M2 + S2

M2 ⇐ using Kerr spacetime! [AB, Kidder & Lehner 07]

• Good estimations also for precessing, spinning binaries
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Anatomy of the kick (inspiral–merger–ringdown)
• Analytic predictions for the kick [Bekenstein; Fitchett & Detweiler; Kidder; Blanchet et al.]

[Damour & Gopakumar 06; Schnittman, AB & NASA-Goddard 07]

Vkick ≃
∫

[

V̂ ·
dP

dt (I22 S21) + V̂ ·
dP

dt (I22 I33) + V̂ ·
dP

dt (I33 I44)
]

dt
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Anatomy of the kick and anti-kick

[Schnittman, AB & NASA-Goddard 07]

• Magnitude of anti-kick depends on QNM-frequencies associated to dominant modes

I22 ∗ S21: (ωQNM
21 − ωQNM

22 ) is small

⇒ drifts off

I22 I33 ∗: (ωQNM
33 − ωQNM

22 ) is large

⇒ spiral back inward
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Cumulative probability distribution for recoil velocities using EOB
approach

[Schnittman & AB 07]

Random spins, a1 = a2 = 0.9 Equal-mass, random spins
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−0.05

fvkick>1000 = 0.027+0.021
−0.014
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Conclusions

• Intriguing (anticipated) simplicity of (non-spinning) binary coalescence: details

of merger hidden behind the curvature potential barrier.

• Consistency between PN calculations through 3PN order and numerical simulations

• Several progresses in estimating the final black-hole mass and spin

• Guided by NR simulations and by PN theory (at earlier times), notably the EOB

model, we have a first example of analytical model for inspiral, merger, and

ringdown to be further improved and extended to longer and accurate simulations.

• Gravitational recoil determined mainly by merger-ringdown phases.

• Improvement of analytic modeling to reduce uncertainties in Monte Carlo

simulations of recoil velocity distribution.
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