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ABSTRACT

We study the interplay of clumping at small scales with the collapse and relaxation of perturba-
tions at much larger scales. We present results of our analysis when the large-scale perturbation
is modelled as a plane wave. We find that in the absence of substructure, collapse leads to for-
mation of a pancake with multistream regions. Dynamical relaxation of the plane wave is faster
in the presence of substructure. Scattering of substructures and the resulting enhancement of
transverse motions of haloes in the multistream region lead to a thinner pancake. In turn, col-
lapse of the plane wave leads to formation of more massive collapsed haloes as compared to
the collapse of substructure in the absence of the plane wave. The formation of more massive
haloes happens without any increase in the total mass in collapsed haloes. A comparison with
the Burgers equation approach in the absence of any substructure suggests that the preferred
value of effective viscosity depends primarily on the number of streams in a region.
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1 INTRODUCTION

Large-scale structures like galaxies and clusters of galaxies are be-
lieved to have formed by gravitational amplification of small per-
turbations (Peebles 1980; Peacock 1998; Bernardeau et al. 2002;
Padmanabhan 2002). Observations suggest that the initial density
perturbations were present at all scales that have been probed by
observations. An essential part of the study of formation of galax-
ies and other large-scale structures is thus the evolution of density
perturbations for such initial conditions. Once the amplitude of per-
turbations at any scale becomes large, i.e. § ~ 1, the perturbation
becomes non-linear and the coupling with perturbations at other
scales cannot be ignored. Indeed, understanding the interplay of
density perturbations at different scales is essential for developing
a full understanding of gravitational collapse in an expanding uni-
verse. The basic equations for this have been known for a long time
(Peebles 1974) but apart from some special cases, few solutions are
known.

A statistical approach to this problem based on the pair con-
servation equation has yielded interesting results (Hamilton et al.
1991; Nityananda & Padmanabhan 1994; Padmanabhan 1996;
Engineer, Kanekar & Padmanabhan 2000), and these results have
motivated detailed studies to obtain fitting functions to express the
non-linear correlation function or power spectrum in terms of the
linearly evolved correlation function (Hamilton et al. 1991; Jain,
Mo & White 1995; Peacock & Dodds 1996; Smith et al. 2003).
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Itis well known from simulation studies that at the level of second
moments, i.e. power spectrum, correlation function, etc., large scales
have an important effect on small scales but small scales do not have
a significant effect on large scales (Peebles 1985; Little, Weinberg &
Park 1991; Klypin & Melott 1992; Bagla & Padmanabhan 1997a;
Couchman & Peebles 1998). Most of these studies used the power
spectrum as the measure of clustering. Results of these simulation
studies form the basis for the use of N-body simulations; e.g. from
the above results we can safely assume that small scales not resolved
in simulations do not affect power spectrum at large scales and can
be ignored.

Substructure can play an important role in the relaxation process.
It can induce mixing in phase space (Lynden-Bell 1967; Weinberg
2001), or change halo profiles by introducing transverse motions
(Peebles 1990; Subramanian 2000), and gravitational interactions
between small clumps can bring in an effective collisionality even
for a collisionless fluid (Ma & Bertschinger 2004; Ma & Boylan-
Kolchin 2004). Thus it is important to understand the role played by
substructure in gravitational collapse and relaxation in the context
of an expanding background. In particular, we would like to know if
this leaves an imprint on the non-linear evolution of the correlation
function. The effect of substructure on collapse and relaxation of
larger scales is another manifestation of mode coupling.

In this paper, we report results from a study of mode coupling
in gravitational collapse. In particular, we study how the presence
of density perturbations at small scales influences collapse and re-
laxation of perturbations at larger scales. These effects have been
studied in the past (Evrard & Crone 1992) but the motivation was
slightly different (Peebles 1990). We believe it is important to study
the issue in greater detail and make the relevance of these effects
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more quantitative using N-body simulations with a larger number of
particles. We also study the reverse process, i.e. how does collapse
of perturbations at large scales affect density perturbations at much
smaller scales.

It is well known that the local geometry of collapse at the time
of initial shell crossing is planar in nature (Zel’dovich 1970), hence
we model density perturbations as a single plane wave in this work.
The simple nature of the large-scale fluctuation allows us to study
the interaction of well-separated scales without resorting to statis-
tical estimators like the power spectrum. We are studying the same
problem in a more general setting and those results will be reported
in a later publication.

The key features of collapse of a plane wave can be understood
using quasi-linear approximations, at least at a qualitative level.
The initial collapsing phase is well modelled by the Zel’dovich ap-
proximation (Zel’dovich 1970), wherein particles fall in towards the
centre of the potential well. The Zel’dovich approximation breaks
down after orbit-crossing as it does not predict any change in the
direction of motion for particles, thus in this approximation particles
continue to move in the same direction and the size of the collapsed
region grows monotonically. In a realistic situation we expect par-
ticles to fall back towards the potential well and oscillate about it
with a decreasing amplitude, and the collapsed region remains fairly
compact. Several approximations have been suggested to improve
upon the Zel’dovich approximation (Gurbatov, Saichev & Shandarin
1989; Shandarin & Zeldovich 1989; Weinberg & Gunn 1990;
Matarrese et al. 1992; Brainerd, Scherrer & Villumsen 1993;
Bagla & Padmanabhan 1994; Sahni & Coles 1995; Hui &
Bertschinger 1996). The adhesion approximation (Gurbatov et al.
1989; Weinberg & Gunn 1990) invokes an effective viscosity: this
prevents orbit-crossing and conserves momentum to ensure that the
pancakes remain thin and matter ends up in the correct region. This
changes the character of motions in dense regions (no orbit-crossing
or mixing in the phase space) but predicts locations of these regions
correctly. If one assumes that the gravitational potential evolves at
a linear rate (Brainerd et al. 1993; Bagla & Padmanabhan 1994),
then it can be shown that the collapsed region remains confined.
The effective drag due to the expanding background slows down
particles and they do not have enough energy to climb out of the
potential well.

Thus the process of confining particles to a compact collapsed
region results from a combination of expansion of the universe and
gravitational interaction of infalling particles. None of the approx-
imations captures all the relevant effects. Therefore we must turn
to N-body simulations (Bertschinger 1998; Bagla 2005) in order
to study the collapse and relaxation of perturbations in a complete
manner.

2 EVOLUTION OF PERTURBATIONS

We will consider only gravitational effects here and ignore all other
processes. We assume that the system can be described in the New-
tonian limit. The growth of perturbations is then described by the
coupled system of Euler’s equation and Poisson’s equation in co-
moving coordinates along with mass conservation, e.g. see (Peebles
1980):
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It is assumed that the density field is generated by a distribution
of particles, each of mass m;, position x;. Hy is the present value
of the Hubble constant, €2, is the present density parameter for
non-relativistic matter and a is the scalefactor. In this paper we will
consider an Einstein—de Sitter universe as the background, i.e. Q. =
1. These can be reduced to a single non-linear differential equation
for density contrast (Peebles 1974):
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The terms A and B are the non-linear coupling terms between differ-
ent modes. B couples density contrasts in an indirect manner through
velocities of particles (k;). The equation of motion still needs to be
solved for a complete solution of this equation, or we can use some
Ansatz for velocities to make this an independent equation.

It can be shown that individual virialized objects, i.e. objects that
satisfy the condition 27 4 U = 0 where T is the kinetic energy and
U is the potential energy, do not make any contribution towards the
growth of perturbations through mode coupling (Peebles 1974) at
much larger scales, i.e. the A — B term is zero. The contribution of
mode coupling due to the interaction of such objects is not known.

Approximate approaches to structure formation can be devel-
oped by ignoring the interaction of well-separated scales. The evo-
lution of density perturbations can be modelled as a combination
of non-linear collapse at small scales, and the collapsed objects
can be displaced using quasi-linear approximations (Bond & Myers
1996a,b,c; Monaco et al. 2002a; Monaco, Theuns & Taffoni 2002b;
Taffoni, Monaco & Theuns 2002). These approaches yield an ac-
ceptable description of properties of collapsed objects and their dis-
tribution for a first estimate. PINOCCHIO (Monaco et al. 2002a,b;
Taffoni et al. 2002) provides sufficient information about halo prop-
erties and merger trees for use with semi-analytic models of galaxy
formation. The efficacy of these models puts an upper bound on the
effects of mode coupling that we are studying here.

In this paper we simplify the system by starting with perturba-
tions that have a non-zero amplitude only for two sets of scales.
We simulate the collapse of a plane wave by starting with non-zero
amplitude of perturbations for the fundamental mode of the sim-
ulation box along the z-axis; the wavenumber of the fundamental
mode is denoted by k;. This serves as the large-scale perturbation
in our study. The amplitude for this mode is chosen so that shell
crossing takes place when the scalefactor a = 1. The power spec-
trum for small-scale fluctuations is chosen to be non-zero in a range
of wavenumbers k( &= §k with a constant amplitude across this win-
dow, i.e. Af(k) = «aA for kg — 8k < k < ko + Sk. A Gaussian
random realization of this power spectrum is used for small-scale
fluctuations. Here Af(k) is the power per logarithmic interval in k&
contributed by small scales (large k) and A is the amplitude of the
fundamental mode that gives rise to the plane wave. The ratio of
A%(k) at k = k¢ and for the plane wave is denoted by ¢, thus when
o = 1 collapse of perturbations at these scales happens at the same
time whereas for o > 1 perturbations at small scales collapse before
the plane wave collapses. We chose the ratio ko /k; = 8 so that there
is a distinct separation in the scales involved.
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Figure 1. Phase space plot for the plane wave at late stages of collapse for
the simulation PM_0OOL. The velocity of particles is plotted as a function of
position. Regions where particles with different velocities can be found are
the multistream regions. As we approach the centre of the pancake located
at z = 32, we go from a single-stream region to a three-stream region and
S0 on up to a seven-stream region near the centre.

Collapse of a plane wave of this kind leads to formation of a
multistream region; we will also use the term pancake to describe
this region. Fig. 1 shows the phase space plot for the plane wave
at late stages of collapse for the simulation PM_0OOL (see Table 1
for details of the simulation). The velocity of particles is plotted as
a function of position; only the z-component is plotted as there is
no displacement or velocity along other directions in this simula-
tion. Regions where particles with different velocities can be found
are the multistream regions. As we approach the centre of the pan-
cake located at z = 32, we go from a single-stream region to a
three-stream region and so on up to a seven-stream region near the
centre.

In the initial stages, the mass in the pancake increases rapidly
as more particles fall in. Fig. 2 shows this in terms of overdensity
which increases sharply from a = 1 to a = 2. A significant fraction
of the total mass falls into the pancake and the infall velocities for
the remaining matter are very small. In this regime the mass of
the pancake is almost constant; this can be seen from the panels
of Fig. 8 (later) where the mass enclosed in the pancake region is
almost constant froma =2 toa = 4.

In the absence of any substructure the collisionless collapse re-
tains planar symmetry and we have layers of multistream regions
with the number of streams increasing towards the centre of the pan-
cake. The presence of small-scale fluctuations can induce transverse
motions and these motions are amplified in the pancake.

A weakly bound substructure can be torn apart due to interac-
tion with rapidly infalling matter. On the other hand, a higher av-
erage density in the multistream region can lead to rapid growth
of perturbations. It is known that pancakes are unstable to frag-
mentation due to growth of perturbations (Valnia et al. 1997). The
velocity field is anisotropic due to infall along one direction, hence
the rate at which perturbations grow will also exhibit anisotropies.

Table 1. This table lists the parameters of N-body simulations we have used.
All the simulations used 1283 particles. The first column lists the name of
the simulation, the second column lists the code that was used for running
the simulation, the third column gives the relative amplitude of small-scale
power and the plane wave, the fourth column tells us whether the large-scale
plane wave was present in the simulation or not, and the last column lists
the distribution of particles before these are displaced using a realization of
the power spectrum. Grid distribution means that particles started from grid
points. Perturbed grid refers to a distribution where particles are randomly
displaced from the grid points; this displacement has a maximum amplitude
of 0.05 grid points. Such an initial condition is needed to prevent particles
from reaching the same position in plane-wave collapse as such a situation is
pathological for tree codes. The TREEPM simulations were run with a force
softening length equal to the grid length.

Name Method o4 Plane wave 1C
PM_00L PM 0.0 Yes Grid
T-00L TREEPM 0.0 Yes Perturbed grid
T_05L TREEPM 0.5 Yes Grid
T_10L TREEPM 1.0 Yes Grid
T_20L TREEPM 2.0 Yes Grid
T_40L TREEPM 4.0 Yes Grid
T_10P TREEPM 1.0 Yes Perturbed grid
T_40P TREEPM 4.0 Yes Perturbed grid
T05 TREEPM 0.5 No Grid
T-10 TREEPM 1.0 No Grid
T20 TREEPM 2.0 No Grid
T40 TREEPM 4.0 No Grid
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Figure 2. Density profile plotted for two epochs for simulations PM_00L
and T_OOL. In these simulations density varies only in the direction along the
plane wave. Solid lines show the density profile ata = 1 and a = 2 from the
PM_0OL simulation; dashed lines show the density profile from the T_OOL
simulation with the same profile.

Velocity dispersion along the direction of plane wave collapse is
larger than the transverse direction, hence the growth of fluctua-
tions in the transverse plane is expected to be more rapid.

If the infalling material contains collapsed substructure, then
gravitational interactions between these can induce large transverse
velocities. This takes away kinetic energy from the direction of
infall, which in turn can lead to a more fragmented and thinner
multistream region.

In the following sections we describe the numerical experiments
we have undertaken in detail, and test the physical ideas and expec-
tations outlined above.

© 2005 RAS, MNRAS 360, 194-202

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2005MNRAS.360..194B

2B.

D5 FNRAS “360. T

Gravitational collapse and the role of substructure 197

3 NUMERICAL EXPERIMENTS AND RESULTS

We used a particle-mesh code (Bagla & Padmanabhan 1997b) and
the TREEPM code (Bagla 2002; Bagla & Ray 2003). Some simu-
lations were run using the parallel TREEPM (Ray & Bagla 2004).
TREEPM simulations used spline softening with softening length
equal to the length of a grid cell in order to ensure collisionless evo-
lution. We used force softening assuming a spline kernel (Springel,
Yoshida & White 2001). All the simulations were carried out with
1283 particles. Table 1 lists parameters of the simulations we have
used for this paper. We have used two types of initial distribution of
particles. In the Grid distribution particles are located at grid points
before being displaced to set up the initial perturbations. Perturbed
grid refers to a distribution where particles are randomly displaced
from the grid points (Bagla & Padmanabhan 1997b); this displace-
ment has a maximum amplitude of 0.05 grid length. Such an initial
condition is needed to prevent particles from reaching the same po-
sition in plane-wave collapse as such a situation is pathological for
tree codes. These small displacements do not affect the power spec-
trum to be realized; PM_OOL and T_OOL were compared to test for
any systematic effects.

Simulations T_10P and T_40P were similar to T_10L and T_40L
except that the small-scale fluctuations were restricted to the direc-
tion orthogonal to the direction of the plane wave. Thus the small-
scale fluctuations had the same form for all z. These simulations
are useful for differentiating between competing explanations for
results outlined below.

In addition to the N-body simulations listed in Table 1, we also
carried out one dimensional simulations within the adhesion model
(Gurbatov et al. 1989) with a finite viscosity following a method
similar to the one outlined by Weinberg & Gunn (1990).

Fig. 2 shows the density profile of the pancake for PM_0OL and
T_O0L simulations at two epochs. These figures demonstrate that the
density profiles in these simulations are almost identical, indeed the
tiny differences can be attributed to the different initial distribution
of particles. We have checked this assertion by running the PM_00L
with the perturbed grid initial conditions. The TREEPM method has
a slightly better resolution but it does not induce any new features.
This is expected as the force softening length used in the TREEPM
simulations is one grid length, the same as the average interparticle
separation, and it has been shown than such force softening does
not induce two-body collisions (Melott et al. 1997; Splinter et al.
1998). We will mostly use TREEPM simulations for the remaining
part of this study.

3.1 Thickness of the pancake

An important indicator of the role played by substructure is the
thickness of the pancake that forms by collapse of the plane wave.
If the substructure does not play an important role in the evolution
of large-scale perturbations then the thickness of the pancake should
not change by a significant amount. On the other hand, if the sub-
structure does indeed speed up the process of dynamical relaxation
then we should see some signature in terms of the thickness of the
pancake, velocity structure, or both. Any such effect will be appar-
ent only at late times as infall of matter into the pancake dominates
at early times. The dynamical effects of substructure will become
important only at late times.

Fig. 3 shows aslice from some of the simulations listed in Table 1.
The plane wave collapses along the vertical axis. The configuration
at a = 2 is shown here; the plane wave begins to collapse ata = 1.
The different panels in this figure refer to simulations T_O0OL, T_10L
and T_40L. The boundary of the multistream region is clearly visible
in all the slices even though this region is fragmented in the last panel
(T-40L). It is clear that the pancake is thinner in simulations with
more substructure.

A more detailed comparison of simulations with a different level
of substructure is shown in Fig. 4. The top panel of this figure shows
the averaged overdensity as a function of the z-coordinate; the plane
wave collapses along this axis. Overdensity is averaged over all x
and y for a given interval (z £ Az) to obtain the averaged values
plotted here. The peak overdensity at the centre of the pancake is
smaller in simulations with more substructure. The mass enclosed
within a given distance of the centre of the pancake (defined here
as the trough of the potential well of the plane wave) is smaller
for more substructure, even though the variation is very small at
less than 10 per cent between the extreme cases (see Fig. 8, later).
Potential wells corresponding to substructure prevent infall into the
pancake region. As the amount of substructure is increased, there is
visible reduction in the size of the region around the pancake where
the density is greater than average. The visual impression of Fig. 3
is reinforced by the variation of overdensity.

The middle panel of Fig. 4 shows the rms velocities of particles in
a direction transverse to the plane-wave collapse as a function of the
z-coordinate. As in the top panel, averaging is done over all x and y
for a given interval (z & Az). This plot shows that the transverse
motions are enhanced in the dense pancake region. The amplitude of
transverse motions is larger in simulations with more substructure.
The size of the region where these motions are significant varies with
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Figure 3. Panels in this figure show the same slice from simulation T_OOL, T_10L and T_40L. These slices are shown for a = 2, the plane wave begins to
collapse at @ = 1. The plane wave collapses along the vertical direction in these slices. The left panel is for T_O0L, the middle panel is for T_10L and the right

panel is for T_40L.
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Figure 4. The top panel in this figure shows the density profile as a function
of z, the direction of collapse for the plane wave. The density profile has been
averaged over the directions transverse to the collapse of the plane wave.
The curves are for a = 2; simulations used are T_OOL (solid line), T_OSL
(dashed line), T_10L (dot-dashed line), T_20L (dotted line) and T_40L (dot-
dot-dashed line). The middle panel shows the rms transverse velocities of
particles at the same epoch for T_OSL (dashed line), T_10L (dot-dashed
line), T_20L (dotted line) and T_40L (dot-dot-dashed line). The lower panel
shows the rms transverse velocities of collapsed haloes at the same epoch
for T_O5SL (dashed line), T_10L (dot-dashed line), T_20L (dotted line) and
T_40L (dot-dot-dashed line).

the amount of substructure, as in case of overdensity (top panel).
The rms transverse velocities do not go to zero outside the pancake
region, instead these level off to a small residual value.

Transverse motions are due to motions of particles in clumps that
constitute substructure, due to infall of particles in these clumps,
and transverse motions of clumps as they move towards each other.
In order to delineate these effects, we have plotted the rms velocities
for haloes in the last panel of Fig. 4. These haloes were selected with
the friends-of-friends (FOF) algorithm using a linking length of / =
0.2 grid length. The transverse component of the velocity of centre of
mass for haloes with more than 50 particles was used for the figure.
Such a high cutoff for halo members is acceptable because typical
haloes have several hundred members; see the following subsection
on mass functions. Differences between simulations with different
amounts of substructure are more pronounced than in the middle
panel. For simulations with a small amount of substructure, the mo-
tion of clumps is subdominant and hence the transverse motions are
contributed mostly by internal motions and infall. In simulations
with more substructure, motions of clumps contribute significantly
to the rms transverse velocity. The gravitational attraction of clumps,
particularly in close encounters in the pancake region, induce the
transverse component. Collisions are enhanced in the pancake re-
gion as the number density of clumps is higher.

In order to convince ourselves that transverse motions induced
by scattering/collision of clumps is the most likely reason for the
reduced thickness of pancakes, we compare simulations T_10L and
T_40L with T_10P and T_40P. In simulations T_10P and T_40P,
the small-scale fluctuations do not have any z-dependence. In these
simulations (T-10P and T_40P) there are no clumps but streams of
particles that are falling in and this reduces the number of scatterings
that take place —no z-dependence means that dense streams run into
each other head-on with grazing collisions happening only rarely.
Of course, in the simulation the presence of the plane wave leads to
breaking of these streams into clumps as the streams are stretched
inhomogeneously in the z-direction. These clumps are aligned par-
allel to the z-axis. In the pancake region scattering of these streams
occasionally leads to complex patterns.

If the presence of substructure and its growth in the pancake was
the only cause for making the pancake thinner then the pancake in
these simulations should be thinner as well. Fig. 5 shows slices from
simulations T_40L and T_40P for a = 2. A slice from the simulation
PM_OOL is also plotted here for reference. This visual comparison
shows that the pancake is thinner in T_40L as compared to T_40P.
Indeed, the thickness of the pancake in T_40P and PM_OOL is very

R IR TR

s .
. %

7,

.

LSRR NI R At A 2

Figure 5. This figure shows slices from simulations T_40L and T_40P for ¢ = 2. The left panels shows a slice from the simulation PM_00OL, plotted here for
reference. The central panel is for T_40P and the right panel is for T_40L. This visual comparison shows that the pancake is thinner in T_40L as compared to

T_40P. Indeed, the thickness of the pancake in T_40P and PM_OOL is very similar.
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similar. This reinforces the point that scattering of clumps in the
pancake region is the key reason for thinner pancakes.

Fig. 6 shows the same slice from simulations T_05L, T_05, T_20L
and T_20 at three epochs, @ = 0.5, 1.0 and 2.0. This figure brings
out the effect of the plane wave on the collapse of perturbations at
small scales as well as the influence of small-scale fluctuations on
the thickness of the pancake formed by collapse of the plane wave.

3.2 Pancakes and viscosity

The substructure helps to confine the pancake to a smaller region.
It is interesting to study the collapse of a plane wave in an N-body
simulation and compare it with the collapse in the adhesion model
(Gurbatov, Saichev & Shandarin 1989) with a finite effective vis-

cosity. We first study the collapse of a plane wave in the absence of

any substructure (N-body simulation PM_00L) for comparison with
numerical simulations of the adhesion model with finite effective
viscosity. One-dimensional adhesion simulations were done using
the plane wave with the same amplitude as the N-body simulations.
We use the standard method for computing the trajectories of par-
ticles in the adhesion model (Weinberg & Gunn 1990); a summary
of the basic formalism is reproduced here for reference.

In the adhesion approximation, the equation of motion for a
particle is replaced by the Burgers equation (Gurbatov Saichev &
Shandarin 1989; Weinberg & Gunn 1990). In the one-dimensional
situation we are considering here, we have:
ou du o%u
ab " Mox T Vaar
Here u = 9x/9b is the ‘velocity’ of particles and b is the linear
growth factor. This equation can be solved by introducing the veloc-

ity potential u = 0vr/9x, where { coincides with the gravitational
potential at the initial time. The solution has the following form:

u=Vy=-2vVhnU (6)

(&)

and

172 peo 2
l —
Ux,b) = ye / exp _%_% dg. (D

—00

Here g is the Lagrangian position of the particle and x is the Eulerian
position. In this method we integrate the differential equation for
particle trajectories. At each time-step, the velocity is calculated
by the above procedure at grid points and interpolated to particles
positions.

Figure 6. This figure shows the effect of a plane wave on the evolution of small-scale fluctuations. Panels in this figure show a slice from N-body simulations.
The top row is for a = 0.5, the middle row is for @ = 1 and the lower row is for a = 2. The left column is for T_05L, the second column is for T_05, the third
column is for T20L and the right column is for T_20.
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Fig. 7 shows the mass enclosed within a distance z from the centre
of the pancake. The enclosed mass is defined as:

Ze+z
M(z) = / dzp(z + z¢). 8)
Here p(z) is the density at position z and z. is the centre of the
pancake. There is no ambiguity for comparing the results with
N-body simulations in case of no substructure as the density de-
pends only on z. While comparing other simulations with the adhe-
sion solution, we will consider the density averaged over the x- and
y-directions. The adhesion model is run only for the one-dimensional
problem. The top panel of Fig. 7 shows the enclosed mass M(z) at
a = 2.0, middle panel is for a = 3 and the lower panel is for a =
4.0. The solid curve shows the enclosed mass for PM_OOL. In the
region with a given number of streams, the N-body curve is smooth.
Jumps in mass enclosed occur at the transition from single-stream
to multistream regions, and at other transitions where the number
of streams changes within the multistream region. All other curves

M(z)

100

M(z)

50

M(z)

1 1 1

0 5 10 15 20

z

Figure 7. This figure shows the mass enclosed within a distance z from
the centre of the multistream region. The top panel shows the curves for
a = 2. The thick solid curve is for the N-body simulation PM_00L. Jumps in
the mass enclosed occur at transition from the multistream region with 2n 4
1 streams to 2n + 3 streams, with n a non-zero positive integer. All other
curves show M(z) for the adhesion model: the dashed curve is for v = 400,
the dotted curve is for v = 600 and the dot-dashed curve is for v = 900. The
middle panel shows the same set of curves for @ = 3 and the lower panel is
fora =4.

show M(z) for the adhesion model: the dashed curve is for v =
400, the dotted curve is for v = 600 and the dot-dashed curve is for
v = 900. There is no constant effective viscosity curve that follows
the N-body curve closely through the multistream regions. Inregions
with a given number of streams, the N-body curve stays around a
curve for constant effective viscosity in the adhesion model. A re-
markable fact is that the N-body curve for the three-stream region
at all the epochs follows the adhesion model curve for v = ~600.
Similar behaviour is seen for the five-stream region which follows
v 2 900 though the range of scales and epochs over which this can
be resolved is somewhat limited.

Addition of substructure clearly changes the character of the prob-
lem and the collapse is no longer one-dimensional. However, the
scale of the substructure is so small compared to the wavelength
of the plane wave that the large-scale collapse is still very close to
planar. Fig. 8 shows the mass enclosed within a distance z from the
centre of the multistream region for simulations PM_O0L, T_10L
and T_40L. The density is averaged over all x and y for this plot in

M(z)

M(z)

100

M(z)

50

PR E S S E S S
0 5 10 15 20

z

Figure 8. This figure shows the mass enclosed within a distance z from
the centre of the multistream region. The top panel shows the curves for
a = 2. The solid curve is for N-body simulation PM_00L. Other simulations
are also plotted here: T_10L (dashed curve) and T_40L (dot-dashed curve).
The dotted curve shows the mass enclosed in the one-dimensional adhesion
model with v = 600. The lower panel shows the same set of curves for a =
4 and the middle panel is for a = 3.
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Figure 9. This figure shows the cumulative mass function F(M) as a func-
tion of mass M in N-body simulations. The top panel is for a = 0.5, the
middle panel is for ¢ = 1 and the lower panel is for @ = 2. Curves are shown
for T_05 (solid curve), T_O5L (thick solid curve), T_10 (dashed curve), T_10L.
(thick dashed curve), T_20 (dotted curve), T_20L (thick dotted curve), T_40
(dot-dashed curve) and T_40L (thick dot-dashed curve).

the same manner as for Fig. 4. Also plotted in the figure are curves
for the adhesion model (v = 600), where the calculation is done
without taking substructure into account. The motivation for such
a comparison is to see the effect of substructure on the favoured
value of the effective viscosity. The substructure removes the sharp
change in density at the boundaries of the three-stream, five-stream
and seven-stream regions and the curves for T_10L and T_40L are
smoother in the pancake region. The finite viscosity curve matches
simulations with substructure over a wider range of scales than with
PM_0OOL. There are no other noteworthy differences.

3.3 Mass function

The mass function of collapsed haloes in these simulations can be
used to understand the influence of plane-wave collapse on substruc-
ture. Collapsed structures form in these simulations primarily due to
initial density fluctuations at small scales, with some modulation by
the collapse of the plane wave. In this section we study the effect of
the collapsing plane wave on the mass function of collapsed haloes.

These haloes were selected with the friends-of-friends algorithm
using a linking length of / = 0.2 grid length. The initial power spec-
trum has a peak at the scale corresponding to 1/8 of the simulation
box, or 16 grid lengths. Thus typical haloes will have a Lagrangian
radius of about eight grid lengths and should contain about 500 par-
ticles. Thus a cutoff of 50 or more particles for haloes is reasonable
for this study.

© 2005 RAS, MNRAS 360, 194-202

In the absence of the plane wave, the only perturbations are at
small scales. The small-scale perturbations are concentrated around
a given mass-scale and the mass function is also peaked around this
mass at early epochs. At late epochs mergers lead to formation of
haloes with a larger mass and the range of masses is greater for
models with a larger amplitude of fluctuations. Fig. 6 shows these
features in the distribution of particles. These features can also be
seen in Fig. 9 where the mass fraction F(M) for a = 0.5, 1.0 and
2.0 is plotted in different panels. F(M) is the fraction of total mass
in collapsed haloes with halo mass above M.

Adding the plane wave at a much larger scale than the small-scale
fluctuations essentially pushes much of the mass into the pancake
region, leaving a small fraction of matter in the underdense regions
that occupy much of the volume. The growth of small-scale fluc-
tuations in the underdense regions is inhibited whereas growth of
fluctuations in the pancake region is enhanced; this is seen clearly
in the slices from simulations shown in Fig. 6. Higher background
density in the pancake region leads to rapid growth of perturba-
tions; mergers of haloes also lead to formation of massive clumps.
These effects become more pronounced at late epochs and result
in a shift of mass function towards larger masses; indeed haloes at
two distinct mass-scales are present. Low-mass clumps in under-
dense regions have the mass expected of haloes in regions where
small-scale fluctuation dominate, whereas haloes of a much higher
mass are present in the pancake region. Fig. 9 shows these two
mass-scales very clearly.

The total mass in collapsed haloes does not change significantly
with the addition of the plane wave. Indeed for simulations T_40L
and T_40, the mass function is the same at a = 0.5 as small scales
dominate. At late times (a = 2), the effect of the plane wave makes
the mass function of T_05L, T_10L and T_20L similar.

Not surprisingly, the presence of large-scale power leads to the
formation of more massive haloes. However it does not seem to
enhance the total mass in collapsed haloes.

4 DISCUSSION

In this paper we studied the effect of substructure on collapse of a
plane wave. The key conclusions of the present study of the role of
substructure are as follows.

(i) The pancake formed due to collapse of the plane wave is thin-
ner if the infalling material is formed of collapsed substructure.

(i) We show that collisions between clumps lead to enhancement
of velocities transverse to the direction of large-scale collapse.

(iii)) We show that in simulations with substructure where colli-
sions are suppressed, pancakes are not thinner.

(iv) Thus collision-induced enhancement of motions transverse
to the collapsing plane wave takes away kinetic energy from the
direction of infall and leads to thinner pancakes.

(v) The presence of large-scale power shifts the mass function
towards larger masses. There is, however, no change in the total
mass in collapsed haloes.

The points outlined above essentially relate to coupling of density
fluctuations at well separated scales. Each of these points refers
to a measurable effect of such a coupling. The nature of large-
scale fluctuation, a single plane wave, does not allow us to estimate
the effect in terms of statistical indicators like the power spectrum.
We plan to study these aspects with larger (256%) simulations where
the large-scale collapse will also be generic. Large, high-resolution
studies are needed as 1283 simulations with particle mesh code
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have not shown any large effect in the power spectrum at late times
(Bagla & Padmanabhan 1997a).

Another important point to consider is that we have considered
two well-separated scales for fluctuations and there is no infall once
fluctuations at the larger scales collapse. Numerical experiments
that can shed light on the effects of this feature are also required to
improve our understanding of the issues.

We also compared the collapse of a plane wave in an N-body with
the collapse in the adhesion model with a finite effective viscosity.
We found that:

(i) the adhesion model predicts the variation of density very well
with a constant effective viscosity in regions with a given number
of streams;

(ii) regions with a given number of streams coincide with the
adhesion model with the same value of effective viscosity at all
epochs.
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