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ABSTRACT

N-body simulations are a very important tool in the study of formation of large-scale structures.

Much of the progress in understanding the physics of galaxy formation and comparison with

observations would not have been possible without N-body simulations. Given the importance

of this tool, it is essential to understand its limitations as ignoring these can easily lead to

interesting but unreliable results. In this paper, we study the limitations due to the finite size

of the simulation volume. We explicitly construct the correction term arising due to a finite

box size and study its generic features for clustering of matter and also on mass functions.

We show that the correction to mass function is maximum near the scale of non-linearity, as a

corollary we show that the correction to the number density of haloes of a given mass changes

sign at this scale; the number of haloes at small masses is overestimated in simulations. This

overestimate results from a delay in mergers that lead to formation of more massive haloes. The

same technique can be used to study corrections to other physical quantities. The corrections

are typically small if the scale of non-linearity is much smaller than the box size. However,

there are some cases of physical interest in which the relative correction term is of order unity

even though a simulation box much larger than the scale of non-linearity is used. Within the

context of the concordance model, our analysis suggests that it is very difficult for present-day

simulations to resolve mass scales smaller than 102 M⊙ accurately and the level of difficulty

increases as we go to even smaller masses, though this constraint does not apply to multiscale

simulations.

Key words: gravitation – methods: N-body simulations – methods: numerical – cosmology:

theory – dark matter – large-scale structure of Universe.

1 I N T RO D U C T I O N

Large-scale structures like galaxies and clusters of galaxies are be-

lieved to have formed by gravitational amplification of small pertur-

bations. For an overview and original references, see, e.g. Peebles

(1980), Peacock (1999), Padmanabhan (2002) and Bernardeau et al.

(2002). Initial density perturbations were present at all scales that

have been observed (Hawkins et al. 2003; Spergel et al. 2003;

Pope et al. 2004). Understanding evolution of density perturba-

tions for such initial conditions is essential for the study of for-

mation of galaxies and large-scale structures. The equations that

describe the evolution of density perturbations in an expanding uni-

verse have been known for a long time (Peebles 1974) and these

are easy to solve when the amplitude of perturbations is small.

These equations describe the evolution of density contrast defined

as δ(r , t) = [ρ(r , t) − ρ̄(t)]/ρ̄(t). Here ρ(r, t) is the density at

point r and time t, and ρ̄ is the average density in the universe at

⋆E-mail: jasjeet@hri.res.in (JSB); jayanti@hri.res.in (JP)

time t. These are densities of non-relativistic matter, the component

that clusters at all scales and is believed to drive the formation of

large-scale structures in the universe. Once density contrast at rel-

evant scales becomes large, i.e. |δ| � 1, the perturbation becomes

non-linear and coupling with perturbations at other scales cannot be

ignored. The equation for evolution of density perturbations cannot

be solved for generic perturbations in this regime. N-body simu-

lations (Bagla & Padmanabhan 1997b; Bertschinger 1998; Bagla

2005) are often used to study the evolution in this regime. Alterna-

tive approaches can be used if one requires only a limited amount

of information and in such a case either quasi-linear approximation

schemes (Zel’dovich 1970; Gurbatov, Saichev & Shandarin 1989;

Matarrese et al. 1992; Brainerd et al. 1993; Bagla & Padmanabhan

1994; Sahni & Coles 1995; Hui & Bertschinger 1996; Bernardeau

et al. 2002) or scaling relations (Davis & Peebles 1977; Hamilton

et al. 1991; Nityananda & Padmanabhan 1994; Peacock & Dodds

1994; Jain, Mo & White 1995; Padmanabhan 1996; Padmanabhan

et al. 1996; Peacock & Dodds 1996; Ma 1998; Kanekar 2000; Smith

et al. 2003) suffice.
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In cosmological N-body simulations, we simulate a representative

region of the universe. This is a large but finite volume and periodic

boundary conditions are often used. Almost always, the simulation

volume is taken to be a cube. Effect of perturbations at scales smaller

than the mass resolution of the simulation, and of perturbations at

scales larger than the box is ignored. Indeed, even perturbations at

scales comparable to the box are undersampled.

It has been shown that perturbations at small scales do not influ-

ence collapse of perturbations at much larger scales in a significant

manner (Peebles 1974, 1985; Little, Weinberg & Park 1991; Bagla

& Padmanabhan 1997a; Couchman & Peebles 1998) if we study

the evolution of the correlation function or power spectrum at large

scales due to gravitational clustering in an expanding universe. This

is certainly true if the scales of interest are in the non-linear regime

(Bagla & Padmanabhan 1997a). Therefore, we may assume that

ignoring perturbations at scales much smaller than the scales of in-

terest does not affect results of N-body simulations. However, there

may be other effects that are not completely understood at the quan-

titative level (Bagla, Prasad & Ray 2005) even though these have

been seen only in somewhat artificial situations.

Perturbations at scales larger than the simulation volume can af-

fect the results of N-body simulations. Use of periodic boundary

conditions implies that the average density in the simulation box

is same as the average density in the universe, in other words we

ignore perturbations at the scale of the simulation volume (and at

larger scales). Therefore, the size of the simulation volume should

be chosen so that the amplitude of fluctuations at the box scale (and

at larger scales) is ignorable. If the amplitude of perturbations at

larger scales is not ignorable then clearly the simulation will not be

a faithful representation of the model being studied. It is not obvious

as to when fluctuations at larger scales can be considered ignorable,

indeed the answer to this question depends on the physical quantity

of interest, the model being studied and the specific length/mass

scale of interest as well.

The effect of a finite box size has been studied using N-body

simulations and the conclusions in this regard may be summarized

as follows.

(i) If the amplitude of density perturbations around the box scale

is small (δ < 1) but not much smaller than unity, simulations un-

derestimate the correlation function though the number density of

small mass haloes does not change by much (Gelb & Bertschinger

1994a,b). In other words, the formation of small haloes is not dis-

turbed but their distribution is affected by non-inclusion of long

wave modes.

(ii) In the same situation, the number density of massive haloes

drops significantly (Gelb & Bertschinger 1994a,b; Bagla & Ray

2005).

(iii) Effects of a finite box size modify values of physical quan-

tities like the correlation function even at scales much smaller than

the simulation volume (Bagla & Ray 2005).

(iv) The void spectrum is also affected by finite size of the sim-

ulation volume if perturbations at large scales are not ignorable

(Kauffmann & Melott 1992).

(v) It has been shown that properties of a given halo can change

significantly as the contribution of perturbations at large scales is

removed to the initial conditions but the distribution of most internal

properties remain unchanged (Power & Knebe 2005).

In some cases, one may be able to devise a method to ‘correct’ for

the effects of a finite box size (Colombi, Bouchet & Schaeffer 1994),

but such methods cannot be generalized to all statistical measures

or physical quantities.

The effects of perturbations at scales larger than the box size can

be added using mode adding procedure (MAP) after a simulation

has been run (Tormen & Bertschinger 1996). This method makes

use of the fact that if the box size is chosen to be large enough then

the contribution of larger scales can be incorporated by adding dis-

placements due to the larger scales independently of the evolution

of the system in an N-body simulation. The motivation for devel-

opment of such a tool is to enhance the range of scales over which

results of an N-body simulation can be used by improving the de-

scription at scales comparable to the box size. Such an approach

ignores the coupling of large-scale modes with small-scale modes

and this again brings up the issue of what is a large enough scale

for a given model such that the effects of mode coupling can be ig-

nored. Large scales contribute to displacements and velocities, and

variations in density due to these scales modify the rate of growth

for small-scales perturbations (Cole 1997).

Effects of a finite box size modify values of physical quantities

even at scales much smaller than the simulation volume (Bagla &

Ray 2005) (BR05, hereafter). In BR05, we suggested use of the

fraction of mass in collapsed haloes as an indicator of the effect

of a finite box size. We found that if the simulation volume is not

large enough, the fraction of mass in collapsed haloes is underes-

timated. As the collapsed fraction is less sensitive to box size as

compared to measures of clustering, several other statistical indi-

cators of clustering to deviate significantly from expected values in

such simulations. A workaround for this problem was suggested in

the form of an ensemble of simulations to take the effect of con-

vergence due to long wave modes into account (Sirko 2005), the

effects of shear due to long wave modes are ignored here. It has

also been shown that the distribution of most internal properties of

haloes, e.g. concentration, triaxiality and angular momentum do not

change considerably with the box size even though properties of a

given halo may change by a significant amount (Power & Knebe

2005).

There is a clear need to develop a formalism for estimating the

effect of perturbations at large scales on a variety of physical quan-

tities. Without such a formalism, we cannot decide in an objective

manner whether a simulation box size is sufficiently large or not.

In this paper, we generalize the approach suggested in BR05 and

write down an explicit correction term for a number of statistical

indicators of clustering. This approach allows us to study generic

properties of the expected correction term in any given case, apart of

course from allowing us to evaluate the magnitude of the correction

as compared to the expected value of the given statistical indicator.

We apply this technique to mass functions in this paper.

2 BA S I C E QUAT I O N S

Initial conditions for N-body simulations are often taken to be a real-

ization of a Gaussian random field with a given power spectrum, for

details see, e.g. Bagla & Padmanabhan (1997b), Bertschinger (1998)

and Bagla (2005). The power spectrum is sampled at discrete points

in the k-space between the scales corresponding to the box size (fun-

damental mode) and the grid size (Nyquist frequency/mode). Here

k is the wave vector. Sampling of the power spectrum in initial con-

ditions of N-body simulations is dense towards the Nyquist mode,

but is sparse for modes near the fundamental mode. Power spectra

for density, potential and the velocity field are related to each other

in the linear regime.1 The power spectra can be used to compute the

1 Density and potential are related through the Poisson equation and hence

the knowledge of power spectrum of one can be used to compute the power
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second moment; either two-point functions or rms fluctuations. In

view of the sampling of the power spectrum in initial conditions,

the second moment can be expressed as a sum over power spectrum

at these points, weighted by an appropriate window function.

In the peak picture, most quantities of interest can be related to

the two-point correlation function (Bardeen et al. 1986), therefore

a method for estimating box-size correction to the second moment

can be used as a base for computing correction for other physical

quantities.

2.1 Clustering amplitude

We now present our approach for estimating the effects of a finite

box size on physical quantities in the linear limit. We will illustrate

our approach using rms fluctuations in mass σ (r), but as shown

below, the basic approach can be generalized to any other quantity

in a straightforward manner. In general, σ (r) may be defined as

follows:

σ 2(r ) =
∫ ∞

0

dk

k

k3 P(k)

2π2
W 2(kr ). (1)

Here P(k) is the power spectrum of density contrast, r is the co-

moving length scale at which rms fluctuations are defined, k =
√

k2
x + k2

y + k2
z is the wave number and W(kr) is the Fourier trans-

form of the window function used for sampling the density field.

The window function may be a Gaussian or a step function in real or

k-space. We choose to work with a step function in real space where

W (kr ) = 9 (sin kr − kr cos kr )2/(k6r 6), see e.g. section 5.4 of Pad-

manabhan (1993) for further details. In an N-body simulation, the

power spectrum is sampled only at specified points in the k-space.

In this case, we may write σ 2(r ) as a sum over these points.

σ 2(r , Lbox) =
9

V

∑

k

P(k)

(

sin kr − kr cos kr

k3r 3

)2

≃
∫ 2π/Lgrid

2π/Lbox

dk

k

k3 P(k)

2π2
9

(

sin kr − kr cos kr

k3r 3

)2

≃
∫ ∞

2π/Lbox

dk

k

k3 P(k)

2π2
9

(

sin kr − kr cos kr

k3r 3

)2

=
∫ ∞

0

dk

k

k3 P(k)

2π2
9

(

sin kr − kr cos kr

k3r 3

)2

−
∫ 2π/Lbox

0

dk

k

k3 P(k)

2π2
9

(

sin kr − kr cos kr

k3r 3

)2

= σ 2
0 (r ) − σ 2

1 (r , Lbox). (2)

Here σ 2
0(r ) is the expected level of fluctuations in mass at scale r

for the given power spectrum and σ 2(r , L box) is what we get in an

N-body simulation at early times. We have assumed that we can

approximate the sum over the k modes sampled in initial conditions

by an integral. Further, we make use of the fact that small scales

do not influence large scales to ignore the error contributed by the

upper limit of the integral. This approximation is valid as long as

the scales of interest are more than a few grid lengths.

spectrum for the other quantity. These quantities at late times are obtained

through evolution in which mode-coupling is significant and hence the effects

of missing modes are not easy to quantify. The sampling of initial conditions

is, in our considered view, more relevant and easier to quantify than the effects

of missing mode-coupling terms. Therefore, in our discussion, we deal with

the initial or the linearly evolved power spectra of various quantities.

In the approach outlined above, the value of σ 2 at a given scale

is expressed as a combination of the expected value σ 2
0 and the

correction due to the finite box size σ 2
1. Here σ 2

0 is independent of

the box size and depends only on the power spectrum and the scale

of interest. It is clear than σ 2(r , L box) � σ 2
0(r ) and also σ 2

1(r , L box) �

0. It can also be shown that for hierarchical models, dσ 2
1(r , L box)/

dr � 0, i.e. σ 2
1(r , L box) increases or saturates to a constant value as

we approach small r.

If the scale of interest is much smaller than the box size Lbox then,

σ 2
1 (r , Lbox) =

∫ 2π/Lbox

0

dk

k

k3 P(k)

2π2
9

(

sin kr − kr cos kr

k3r 3

)2

≃
∫ 2π/Lbox

0

dk

k

k3 P(k)

2π2

−
r 2

5

∫ 2π/Lbox

0

dk

k

k5 P(k)

2π2

+
3r 4

175

∫ 2π/Lbox

0

dk

k

k7 P(k)

2π2
+ O(r 6) (3)

= C1 − C2r 2 + C3r 4 + O(r 6). (4)

The small parameter in the expansion is r/L box. This expansion is

useful if k3 P(k) goes to zero as we approach k = 0. It is interesting

to note that the first term is scale independent. The numerical values

of Ci can be used to estimate the scale below which σ 1 can be

approximated by a constant. Later terms are scale dependent and

the noteworthy feature is that modes closer to 2π/L box contribute

more significantly to the integral for most models.

It is noteworthy that the first term, C1, has the same value for all

choices of window functions that approach unity at small k. By virtue

of this fact, C1 is also the correction for the two-point correlation

function ξ (r) at sufficiently small scales.

At large scales σ 2
0(r ) and σ 2

1(r , L box) have a similar magnitude

and the rms fluctuations in the simulation become negligible com-

pared to the expected values in the model. As we approach small r

the correction term σ 2
1(r , L box) is constant and for most models it

becomes insignificant in comparison with σ 2
0(r ). In models where

σ 2
0(r ) increases very slowly at small scales or saturates to a con-

stant value, the correction term σ 2
1 can be significant at all scales.

This can be seen from the expression for C1 for power-law models

[P(k) = Akn]:

C1 =
1

n + 3

A

2π2

(

2π

Lbox

)n+3

. (5)

Clearly, this term becomes more and more significant as n → −3.

Fig. 1 illustrates this point, here C1 is shown as a function of n + 3.

We fix A by choosing a scale of non-linearity rnl such that σ 0(r nl) =
1. Curves are plotted for three values of L box/r nl: L box/r nl = 16

(dot–dashed curve), L box/r nl = 128 (dashed curve) and L box/r nl =
512 (solid curve). As σ 0 is unity at the scale of non-linearity and

C1 is the first-order correction, clearly we require C 1 ≪ 1 for the

error due to box size to be small and hence ignorable. If we fix

C 1 � 0.1 then we can simulate n = −1 with L box/r nl = 16 but for

more negative indices we require a larger separation between the

box size and the scale of non-linearity. We can just about manage

n = −2.3 with L box/r nl = 128 with the same threshold on error,

and with L box/r nl = 512 we can go up to n = −2.5. As N-body

simulations are most useful for studying non-linear evolution, even

the largest simulations possible today are left with a small range of

scales over which σ 0 � 1 for n � −2.0. This shows the pitfalls of

simulating models with n ≃ −3 over the entire range of scales.
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Figure 1. This figure shows the first correction term C1 (see equation 5)

for power-law models with index n normalized such that σ 2
0(r nl) = 1. The

curves here are for L box/r nl = 16 (dot–dashed curve), L box/r nl = 128

(dashed curve) and L box/r nl = 512 (solid curve). C1 is plotted as a function

of n + 3 and we find that the correction term increases as n + 3 → 0. See

text for more details.

Fig. 2 (top panel) shows lines of constant C 1/σ
2
0 in the L box–r

plane for the � cold dark matter (�CDM). We chose n = 1, h =
0.7, �� = 0.7, �nr = 0.3 and σ 8 = 0.9. We ignored the effects

of Baryons on the power spectrum. From top to bottom, the lines

correspond to C 1/σ
2
0 = 0.01, 0.03, 0.1, 0.3 and 0.5. It is noteworthy

that a box size smaller than 0.5 Mpc is precluded if we insist on

C 1(L box)/σ 2
0(r ) � 0.1, irrespective of the scale of interest. This

implies that we cannot expect to simulate scales smaller than about

0.5 kpc in the �CDM model without considerable improvement in

the dynamic range of cosmological N-body simulations. As we are

using linearly evolved quantities for our argument, the comments

on box size are valid irrespective of the redshift up to which the

simulation is run. The contours do not change if we use σ 2
1 instead

of C1.

The lower panel of the same figure shows the scale of non-linearity

for the �CDM model as a function of redshift.

This formalism can be used to estimate corrections for other

estimators of clustering. For reference, we have given expres-

sions equivalent to equation (4) for the correction to ξ and ξ̄ in

Table 1.

2.2 Velocities

We can use the method outlined above to estimate finite box cor-

rections to the velocity field. Velocities and density contrast are re-

lated to one another (Peebles 1980) in the linear regime. The power

spectra for these two are related as P v(k) ∝ P(k)/k2. Thus, bulk ve-

locities at any given scale get a larger contribution from the power

spectrum at large scales (small k) than density fluctuations. This

implies that the correction term must be more significant for veloc-

ities than the equivalent correction for the clustering amplitude. We

will discuss the corrections in velocity field in detail in a follow-up

paper.

Figure 2. The top panel shows curves of constant C 1(L box)/σ 2
0(r ) on the r–

L box plane for the �CDM model (see text for details). Lines mark C 1/σ
2
0 =

0.01, 0.03, 0.1, 0.3 and 0.5, from top to bottom. The lower panel shows the

scale of non-linearity rnl as a function of redshift for the �CDM model.

Table 1. This table lists corrections due to a finite box

size to indicators of clustering in the limit r ≪ L box. These

expressions are equivalent to equation (4) and constants

Ci are the same as in that equation.

Indicator Correction

ξ (r) C1 − 5
6

C2r2 + 35
72

C3r4 + O(r6)

ξ̄ (r ) C1 − 1
2

C2r2 + 5
24

C3r4 + O(r6)

2.3 Mass function

We can use the explicit correction for rms fluctuations (σ ) to esti-

mate the correction for mass functions of haloes. We use the Press–

Schechter approach (Press & Schechter 1974; Bond et al. 1991), but

we also give results for the Sheth–Tormen mass function (Sheth &

Tormen 1999; Sheth, Mo & Tormen 2001) in order to demonstrate

that our results are generic in nature.
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The mass fraction in collapsed haloes with mass greater than M

is given in the Press–Schechter model by

F(M, Lbox) = erfc

[

δc

σ (M, Lbox)
√

2

]

=
2

√
π

∫ ∞

δc/σ (M,Lbox)
√

2

exp(−x2) dx . (6)

Where δc(≃1.68 for Einstein-de Sitter cosmology) is a parameter2

and M is related to the scale r through the usual relation. We can

write F as the contribution expected in the limit L box → ∞ and a

correction due to the finite box size.

F(M, Lbox) =
2

√
π

∫ ∞

δc/σ0(M)
√

2

exp(−x2) dx

−
2

√
π

∫ δc/σ (M,Lbox)
√

2

δc/σ0(M)
√

2

exp(−x2) dx

= F0(M) − F1(M, Lbox). (7)

The correction to F(M) due to the finite box size always leads to an

underestimate as F 1(M , L box) is always positive. This is consistent

with what we found in BR05. However, F 1(M , L box) is not a mono-

tonic function of M as it goes to zero at small as well as large M.

At small M (M ≪ M nl),
3 the limits of the integral differ by a very

small amount. This difference (δcσ
2
1 /2

√
2σ 3

0 ) keeps on decreasing

as we get to small M while the integrand remains finite. Therefore,

we expect F1 to decrease at small M. At these scales, we can write

an approximate expression for F 1(M):

F1(M) ≃
δc√
2π

σ 2
1

σ 3
0

exp

(

−
δ2

c

2σ 2
0

)

. (8)

This clearly decreases as we go to small M: σ 1 goes over to the

constant C1 and σ 0 keeps increasing.

At large M (M ≫ M nl), both σ (M , L box) and σ 0(M) are small

and the limits of the integral cover the region where the integrand

is very small. Thus, we expect F 1(M , L box) to become smaller as

we go to larger M in this regime. At these scales, we also expect

F0 and F1 to become almost equal while F(M) goes to zero faster

than either term. Therefore, F 1(M , L box) must have a maxima at an

intermediate scale. The scale at which the maxima occurs can be

found by solving the following equation.

d log σ 2
1

d log σ 2
0

= −
σ 2

0

σ 2
1

[

σ

σ0

(

1 −
σ 2

1

σ 2
0

)

exp

(

δ2
c σ

2
1

2σ 2σ 2
0

)

− 1

]

≃
3

2
−

δ2
c

2σ 2
0

. (9)

Here, the second equation is obtained if σ 1 ≪ σ 0. If L box ≫ r nl,

where rnl is the scale of non-linearity then σ 1 is very well approx-

imated by the Taylor series equation (4) around this scale and σ 1

is a very slowly varying function of scale. Thus F 1(M , L box) has a

maxima at σ 0 = δ2
c/3 ∼ 1 if the first term in equation (4) is a good

approximation for σ 1. If scale-dependent terms in equation (4) are

not ignorable then the maxima of F 1(M , L box) shifts to smaller

scales (larger σ 0) in a manner that depends on the power spectrum

and box size Lbox.

2 In the spherical collapse model, this is the linearly extrapolated density

contrast at which we expect the halo to virialize (Gunn & Gott 1972).
3 Mnl is the mass corresponding to the scale where σ 0 = 1 and we will

assume that Lbox is much larger than this scale.

Figure 3. The Press–Schechter mass function and correction terms are plot-

ted as a function of mass. F 0(M) (solid curve), F(M) (dashed curve) and

F 1(M) (dot–dashed curve) are shown here. The scale where σ0 = δc/
√

3 is

marked with a vertical dotted line, we see that this estimate coincides with

the maximum of F 1(M). The correction term F 1(M) is more than 10 per

cent of F 0(M) at this scale. Also shown is the approximate expression equa-

tion (8) for F 1(M) (dot-dot-dot–dashed curve) and we note that it follows

the actual curve to masses greater than Mnl. Mass here is plotted in units of

mass of each particle and we assumed that the scale of non-linearity is 8 grid

lengths.

Fig. 3 shows the Press–Schechter mass function F(M) for a power-

law model with n = −2, L box/r nl = 16. We have plotted F 0(M)

(solid curve), F(M) (dashed curve) and F 1(M) (dot–dashed curve)

as a function of M. The scale where σ0 = δc/
√

3 is marked with a

vertical dotted line, we see that this estimate is close to the maximum

of F 1(M). The correction term F 1(M) is more than 10 per cent

of F 0(M) at this scale. Also shown is the approximate expression

equation (8) for F 1(M) (dot–dot–dot–dashed curve) and we note

that it follows the actual curve to masses greater than Mnl. This figure

illustrates all the generic features of corrections to mass function that

we have discussed above.

The multiplicity function f is often defined as the fraction of mass

in a logarithmic interval in mass:

f (M, Lbox) d log M = −
∂F(M, Lbox)

∂ log M
d log M

⇒ f (M, Lbox) = −
d F0(M)

d log M
+

∂F1(M, Lbox)

∂ log M

= f0(M) − f1(M, Lbox). (10)

It is not possible to reduce this expression further while writing

the correction term due to the finite box size separately. We can,

however, ascertain generic properties of the correction term f 1(M ,

L box) from our understanding of f 1(M , L box). At large M , f 1 is

positive as f 1(M , L box) decreases with increasing M. Thus, the

mass fraction of haloes in this mass range is underestimated in

simulations. For typical models and simulations, this is the most

significant effect of a finite box size.

We know that f 1 has a zero near the scale of non-linearity as

F1 has a maxima here. Thus, there is a scale where corrections for

the multiplicity function due to a finite box size vanish. At smaller

scales, the slope of F1 and hence f 1 changes sign and the correction

to mass fraction in haloes is positive. A finite box size leads to an
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Figure 4. The Press–Schechter multiplicity function and correction terms

are plotted as a function of mass. f 0(M) (solid curve), f (M) (dashed curve)

and f 1(M) (dot–dashed curve) are shown here. The scale where σ0 = δc/
√

3

is marked with a vertical dotted line, we see that this estimate coincides with

change of sign for f 1(M). At scales below this, the correction term f 1(M)

is positive and hence there are more haloes in simulation than expected in

the model. Also shown is the approximate expression for f 1(M) (dot-dot-

dot–dashed curve). Mass here is plotted in units of mass of each particle and

we assumed that the scale of non-linearity is 8 grid lengths.

overestimate of number of low-mass haloes. This overestimate is

caused by absence of long wave modes, as the low-mass haloes do

not merge to form the high-mass haloes.

The magnitude of overestimate depends on σ 1, and hence on the

slope of the power spectrum and Lbox. In the limit of M ≪ M nl, we

can use equation (8) to compute the magnitude of overestimate:

f (M) ≃ f0(M) +
3δc√

2π

C1

σ 4
0

∣

∣

∣

∣

dσ0

d log M

∣

∣

∣

∣

. (11)

Here, we have ignored the contribution of the exponential term in

equation (8). The correction term scales as M (n+3)/2 for power-law

models, thus it is significant even at small mass scales if n ≃ −3.

Clearly, the term is also large for CDM like power spectra if the slope

of the power spectrum is close to −3 at all scales in the simulation

volume.

Fig. 4 shows the Press–Schechter multiplicity function and cor-

rection terms as a function of mass for the model used in Fig. 3.

(Power-law model with n = −2, L box/r nl = 16.) The expected mul-

tiplicity function f 0(M) (solid curve), what is expected in the sim-

ulation f (M) (dashed curve) and the correction term f 1(M) (dot–

dashed curve) are shown here. The scale where σ0 = δc/
√

3 is

marked with a vertical dotted line, we see that this almost coincides

with change of sign for f 1(M).4 At scales below this, the correction

term f 1(M) is positive and hence there are more haloes in the sim-

ulation than expected in the model. The relative magnitude of the

correction term is large for M > M nl and this is the most significant

effect of a finite box size on the mass function. The overestimate of

the multiplicity function is typically a subdominant effect, as it is

for the model shown here. However, as we will see below, this effect

4 The change of sign happens at σ 0 = 1 instead of σ 0 = 0.97 drawn here

with δc = 1.68.

can be very significant in some situations. Also shown in the fig-

ure is the approximate expression for f 1(M) (dot–dot–dot–dashed

curve) in the limit M ≪ M nl. Unlike the approximation for f 1(M)

which is accurate over a large range of scales, this is expected to be

valid only in the limit of M ≪ M nl and indeed, is off by about a

factor of 2 at the smallest scales shown here. However, it is a good

approximation if we go to even smaller masses. We note that for

this model, the overestimate of multiplicity function due to the fi-

nite box is small and therefore is difficult to detect. For this model,

C 1/σ
2
0 ≃ 0.2 at the scale of non-linearity and is smaller than 0.1 at

scales where the overestimate in f (M) is maximum. At small scales,

f 1/ f 0 is typically of the same order of magnitude as C 1/σ
2
0.

2.3.1 Sheth–Tormen mass function

We now give corresponding formulae for the Sheth–Tormen mass

function (Sheth & Tormen 1999; Sheth et al. 2001). The definition

of mass function (equation 6) is modified to:

F(M, Lbox) =
2

√
π

∫ ∞

δc/σ (M,lbx)
√

2

A(1 + x−2q ) exp(−x2) dx . (12)

In the limit of A = 0.5 and q = 0 this is identical to the usual Press–

Schechter mass function (equation 6). The maxima of the correction

term [F 1(M , L box)] occurs when the following equation is satisfied:

d log σ 2
1

d log σ 2
0

= −
σ 2

0

σ 2
1

[

σ

σ0

(

1 −
σ 2

1

σ 2
0

)

exp

(

δ2
c σ

2
1

2σ 2σ 2
0

) 1 +
(

δc√
2σ0

)−2q

1 +
(

δc√
2σ

)−2q
− 1







≃
3

2
−

δ2
c

2σ 2
0

− q

(

δc√
2σ0

)−2q

. (13)

As before, this reduces to the expression in the Press–Schechter

case (equation 9) in the limit q = 0. The qualitative features of

the finite box correction to mass function are the same for the two

prescriptions and may be considered to be generic. For reference, we

write approximate expressions for correction to the mass function

F(M):

F1 ≃
δc√
2π

σ 2
1

σ 3
0

exp

(

−
δ2

c

2σ 2
0

)

A

[

1 +
(

δc√
2σ0

)−2q
]

(14)

and the multiplicity function f (M):

f1 =
3δc√

2π

C1

σ 4
0

(

dσ0

d log M

)

A

[

1 +
(

1 −
2q

3

)(

δc√
2σ0

)−2q
]

(15)

for the Sheth–Tormen mass function.

2.3.2 N-body simulations

We present here some preliminary results of a comparison of our

results with N-body simulations. We do not try to fit either the

Press–Schechter or the Sheth–Tormen mass functions to simulations

here, instead we use a simulation with a larger Lbox as reference

and compare the number density of haloes as a function of mass

with another simulation run using a smaller Lbox. More detailed

results obtained from N-body simulations will be presented in a

later publication.
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Figure 5. Shown here is the number density of haloes n(M) dM in the mass

range M − M + dM for these two simulations. The solid line shows the

number density of haloes in the reference simulation (L box = 256). Number

density of haloes in the simulation with L box = 64 Mpc is shown by the

dashed line.

We simulated the n = −2 power-law model in an Einstein-de

Sitter universe with the normalization rnl = 8 Mpc at the final epoch.

We chose one grid length of the simulation to equal 1 Mpc. The

simulation was run with two values of the box size: L box = 64 and

256 Mpc, with the latter being the reference. The simulations were

run using the TreePM method (Bagla 2002; Bagla & Ray 2003).

The parallel TreePM code was used for the 2563 simulation (Ray &

Bagla 2004).

Fig. 5 shows the number density of haloes n(M) dM in the mass

range M − M + dM for these two simulations. Note that following

our definitions n(M) = f (M)/M2, where f (M) is the multiplic-

ity function. The solid line shows the number density of haloes in

the reference simulation. One can see the approximately power-law

variation at small M and a rapid fall-off at large M. Number density

of haloes in the simulation with L box = 64 Mpc is shown by the

dashed line. As expected from the above discussion, the deviation

from power law starts at smaller masses as the number density of

very massive haloes is underestimated as compared to the reference

simulation. At smaller M, we find about 10 per cent more haloes

in this simulation as compared to the reference. It is noteworthy

that the number density of low-mass haloes remains above that in

the reference simulation at all masses below the rapid drop around

102 M⊙. Both the features follow the predictions in the preceding

discussion, indeed we have shown that these features are indepen-

dent of the specific analytical form for the mass function. Here, we

have also shown that the same behaviour is reproduced in N-body

simulations. A more detailed comparison is beyond the scope of this

paper and the results will be presented in a later publication.

3 D I S C U S S I O N

In the preceding sections, we have described a method to estimate

errors in the descriptors of clustering in the linear regime. We have

also shown that the key results of the analytical study are borne out

by N-body simulations. We have shown that the error is typically

small if the scale of interest is sufficiently smaller than the box size.

An implicit requirement is that the scale of non-linearity too should

be much smaller than the box size; if this restriction is overlooked

then we not only ignore power in modes larger than the simulation

box but also the significant effects of mode coupling from scales in

the mildly non-linear regime. Therefore, we require r , r nl ≪ L box.

We propose using σ 2
1/σ

2
0 as an indicator of the significance of the

finite box size, any descriptor of second moment can be used but σ

has the virtue of being positive definite at all scales. Our proposal is

that σ 2
1(r )/σ 2

0(r ), σ 2
1[r nl(z)]/σ 2

0[r nl(z)] ≪ 1, for the finite box-size

corrections to be ignorable. All the σ s are evolved linearly here.

Conversely, the ratio σ 1/σ 0 at the scale of interest is indicative

of the magnitude of correction due to the finite box size. For a

given relative magnitude of the correction term (σ 1/σ 0), L box/r nl

is required to be larger for spectra with more large-scale power.

Indeed, the required L box/r nl approaches infinity as the slope of the

power spectrum approaches −3.

As a result of finite box-size corrections, the amplitude of density

perturbations is not a power law and the range of scales over which

it can be approximated by one becomes smaller as we approach

n + 3 → 0. In the linear regime, the radial pair velocity is related

directly with ξ̄ (Peebles 1980; Nityananda & Padmanabhan 1994).

As ξ̄ is not a pure power law in simulations due to box-size cor-

rections, we expect that the pair velocities must also deviate from

expected values. This, in turn leads to deviations from scale invari-

ant growth of density perturbations. This explains the difficulty in

getting scale invariant evolution for models like n = −2 in N-body

simulations (Jain & Bertschinger 1996, 1998). For realistic mod-

els like the �CDM, the correction term is significant only if the

scales of interest are below a few kpc and becomes larger as we

move to smaller scales (see Fig. 2). Indeed, at these small scales

we may require L box/r ∼ 104 or even greater in order to manage

C 1/σ
2
0 = 0.1. Of course, a bigger simulation volume is required if

we demand better accuracy. On the other hand, if we are interested

in scales larger than 102 kpc, present-day simulations are sufficient

for keeping C 1/σ
2
0 � 0.01.

We have shown that at sufficiently small scales the correction

due to a finite box size can be written as a series of progressively

smaller terms. The first correction term (C1) is shown to be positive

definite. We have also shown that the first correction term is the same

for two-point correlation function and σ 2, indeed it is the same for

all descriptors of the second moment for which the effective window

function goes to unity at small k.

As an application of our method, we discussed the correction to

mass function and multiplicity function using the Press–Schechter

as well as the Sheth–Tormen approach. We have given the explicit

form of the correction term due to finite box size in each case. We

have also given approximate expressions for the correction term

and have shown that the approximation is very good in case of mass

function. The mass function is always underestimated in simulations

due to finite box-size corrections. Multiplicity function, and hence

also the number density of haloes of a given mass are underesti-

mated at M > M nl. At smaller mass scales, however, the multiplicity

function is overestimated and we find more haloes in a simulation

than expected in the model. The mass scale at which the crossover

from underestimate to overestimate occurs is given by equation (10)

for Press–Schechter and equation (14) for Sheth–Tormen mass

function.

The overestimate at small scales is related to the underestimate of

mass in haloes at large-scales. If the full power spectrum had been

taken into account, the smaller haloes would have merged to form

more massive haloes. In absence of large-scale modes, the formation

of massive haloes is slowed down and a larger number of low-mass
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Figure 6. The multiplicity function expected in the �CDM model (see text for details). The top row is for Press–Schechter mass function and the lower row is

for Sheth–Tormen mass function. The left-hand column is for z = 20 and the right-hand column is for z = 15. The expected multiplicity function is plotted as

a function of mass, shown in each panel by a solid curve. Other curves correspond to multiplicity for a finite simulation box: L box = 5 h−1 kpc (dotted curve),

L box = 20 h−1 kpc (dot–dashed curve) and L box = 100 h−1 kpc (dashed curve). These correspond to C 1/σ
2
0 ≃ 0.6, 0.3 and 0.19, respectively.

haloes survive. A detailed analysis of the effect of finite box-size

correction on merger rates for haloes will be presented in a forth-

coming paper. Of significant interest is the impact on rates of major

mergers (Cohn, Bagla & White 2001) as these have implications for

observations.

We find that the overestimate in multiplicity function is large

whenever the ratio σ 2
1(r , L box)/σ 2

0(r ) ∼C 1(L box)/σ 2
0(r ) is large. To

illustrate this correlation, we have plotted the multiplicity function

f 0(M) for the �CDM model in Fig. 6. This has been plotted for

redshift z = 20 and 15 and the mass range has been chosen such that

very large box size is required to keep σ 2
1(r , L box)/σ 2

0(r ) smaller than

0.1. We have also plotted f (M , L box) here, with L box = 5 h−1 kpc

(dotted curve), L box = 20 h−1 kpc (dot–dashed curve) and L box =
100 h−1 kpc (dashed curve). These correspond to C 1/σ

2
0 ≃ 0.6, 0.3

and 0.19, respectively. The top row is for the Press–Schechter mass

function and the lower row is for the Sheth–Tormen mass function.

An identical x–y range has been used to highlight the differences

between the two models for mass function as well. It is noteworthy

that the relative error is similar in both the cases even though the

multiplicity function itself is different. At z = 20, the multiplicity

function is underestimated by a large amount for L box = 5 h−1 kpc,

even though L box/r nl ≃ 120 and if we are interested in scales around

1 pc then L box/r ≃ 5000. The situation at small masses is better for

the other two simulation volumes considered here. For z = 15, the

scale of non-linearity is r nl = 1.4 h−1 kpc, very close to L box =
5 h−1 kpc and hence we do not expect believable results for this box

size. Indeed, the two panels on the right demonstrate the large errors

and the absurdly incorrect shape of the multiplicity function. The

difference in f (M) and f 0(M) at 10−6 M⊙ is about 25 per cent for

C 1(L box)/σ 2
0 = 0.3, in this case L box = 20 h−1 kpc and L box/r ≃

2 × 104. The error in the multiplicity function is slightly larger

than 10 per cent for L box = 100 h−1 kpc even though L box/r ≃
105 and L box/r nl ≃ 67. The multiplicity function plotted here is

the global function, and the conditional mass functions should be

used in order to estimate errors in simulations where a high peak

is studied at better resolution. Similar results are obtained for other

mass functions that have been suggested as a better fit to simulation

data (Jenkins et al. 2001; Warren et al. 2005).

The above discussion demonstrates the perils of using simulations

where C 1(L box)/σ 2
0(r ) is close to unity. One may argue that models

for mass function have not been tested in this regime where the

local slope of the power spectrum is very close to −3, but the fact

that error in amplitude of density perturbations itself is large should

be reason enough to worry about reliability of results. Further, the

agreement in the magnitude of errors for the several approaches to

mass functions also gives us some confidence in results.
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Majority of simulations are not affected by such serious errors, as

the slope of power spectrum approaches −3 only at very small scales

(large wavenumbers). However, high-resolution simulations of ear-

liest structure formation in the �CDM model need to have a very

large dynamic range before the results can be believed within 10 per

cent of the quoted value. Indeed, our work may have some relevance

to the ongoing discussion about the Earth mass haloes (Diemand,

Moore & Stadel 2005; Moore et al. 2005; Zentner, Koushiappas &

Kazantzidis 2005; Zhao et al. 2005a,b).

4 C O N C L U S I O N S

Conclusions of this work may be summarized as follows.

(i) We have presented a formalism that can be used to estimate

the deviations of cosmological N-body simulations from the models

being simulated due to the use of a finite box size. These devia-

tions/errors are independent of the specific method used for doing

simulations.

(ii) For a given model, the deviations can be expressed as a func-

tion of the scale r of interest and Lbox, the box size of simulations.

(iii) We have applied the formalism to study deviations in rms

fluctuations in mass in the initial conditions.

(iv) We find that the errors are small except for models where the

slope of the power spectrum is close to −3 at scales of interest.

(v) The errors in case of the �CDM model are significant if the

scale of interest is smaller than a kpc even if simulations as large as

the Millennium simulation (Springel et al. 2005) are used.

(vi) We have studied errors in mass function in the Press–

Schechter model, as well as other models.

(vii) The main error due to a finite box size is that the number of

high-mass haloes is underestimated.

(viii) The number of low-mass haloes is overpredicted in simula-

tions if the box size effects are important. This happens as low-mass

haloes do not merge to form the (missing) high-mass haloes.

(ix) We have verified these trends using N-body simulations.

We note that it is extremely important to understand the sources of

errors in N-body simulations and the magnitude of errors in quan-

tities of physical interest. N-body simulations are used to make

predictions for a number of observational projects and also serve as

a test bed for methods. In this era of ‘precision cosmology’, it will

be tragic if simulations prove to be a weak link. We would like to

note that our results apply equally to all methods of doing cosmo-

logical N-body simulations, save those where techniques like MAP

are used to include the effects of scales larger than the simulation

volume.

The method for estimating errors due to a finite box size described

in this paper can be used for several physical quantities. In this paper,

we have used the method to study errors in clustering properties and

mass functions. We are studying the effect of finite box size on

velocity fields and related quantities, the results will be presented

in a later publication.
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