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CMB Data Analysis pipeline

In every step of CMB data analysis the aim is to reduce the volume
of data without losing information.
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Data Analysis Techniques

Scientific observations can be represented by a data vector d
which can be a time series {t} or temperature map of the sky
{T} or something else.

Data have information about some physical process for which
we have a theoretical model represented by a set of
parameters i.e., parameter vector Θ.

One of its example is a Gaussian process represented by two
parameters i.e., the mean µ and the variance σ2. The
probability of obtaining data d given a theoretical (Gaussian
model (µ, σ2)) is given by:

P(d |µ, σ2) =
1√

2πσ2
exp

[
−1

2

(d − µ)2

σ2

]
(1)
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Data Analysis Techniques

Note that finding out which of the theoretical model is better
than others e.g., we should be fitting a parabola rather than a
line, is different from finding the parameters of a model.

In the present discussion we will not discuss model
comparison, we will always assume a model is true and will try
to find its parameters i.e., what are the values of the
parameters of ΛCDM cosmological model.

Values of parameters do not make sense unless we specify a
model.

Once we have a model (with its parameters) we can easily
create data by simulating that model and this is called a
forward problem.

Finding parameters Θ of a model from the data d is called the
inverse problem which is much harder to solve than the
forward problem.
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Linear Problem

A problem is said to be a linear problem when the data d
depends on model parameters linearly, for example fitting a
polynomial is a linear problem:

di =
M∑
j=1

cjθ
j for i = 1,N (2)

where ci are the model parameters.

By definition there is no linear relationship between the data
and model parameter for a non-linear problem, for example,
fitting a Gaussian is a non-linear problem.

Non-linear problems are harder to solve than linear problems.

Dependency of cosmological data i.e., CMB map, on
cosmological parameters is a non-linear problem.
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Solvable problems

Not all the inverse problems are solvable and in some cases we
can easily find out why that is so.

On the basis of whether the size N of the data vector d is
larger, smaller or equal to the size M of the parameter vector
Θ, there are three possibilities.

N = M : Unique solution is possible
N > M : Over constrained problem, χ2 minimization, Unique
solution
N < M : Under-constrained problem, ill posed problem, priors,
regularization

Note that in the above consideration we have assumed that
all the data points are independent.

One of the common methods to solve an inverse is to
minimize a measure of misfit between the data and the
theoretical model.
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Map Making in CMB

In CMB experiments like WMAP and Planck the time order
data or TOD d depends on the sky temperature T in the
following way:

Di = AijTj + Nj (3)

the index i and j are over time and pixels respectively.

In order to make a map from the TOD we have to estimate T
from D for which we can minimize the following function:

f (T ) = (D − AT )′(D − AT ) (4)

which gives:
T̂ = (A′A)−1A′D (5)
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CMB Map making

In place of f (T ) if we can also minimize χ2 :

χ2(T ) = (D − AT )′C−1
N (D − AT ) (6)

where CN =< NN ′ > is the noise covariance matrix, then we
get:

T̂ = (A′C−1
N A)−1A′C−1

N D (7)

which is called Maximum-Likelihood (ML) solution.

The covariance matrix of the maximum likelihood solution is
given by :

N = (A′C−1
N A)−1 (8)

[Tegmark (1997)]
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Chi-Square Distribution

If we have a variable y =
∑N

i=1 X
2
i and X is drawn from Gaussian

random distribution then Y follows χ2 distribution of degree ν:

fχ2 (x) =
x

ν
2−1e−

x
2

Γ(ν
2 )2

ν
2

(9)

For large ν, χ2 distribution approaches Gaussian.
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CMB anisotropies

CMB temperature anisotropies are expressed in terms of multipoles:

∆T (n̂)

T
=
∞∑
l=0

m=l∑
m=−l

almYlm(n̂) (10)

where

alm =

∫
∆T (n̂)

T
Ylm(n̂)dn̂ (11)

Where alm follow the Gaussian distribution with zero mean and
variance given by Cl :

< alm >= 0 (12)

and
〈alma∗l′m′〉 = δll′δmm′Cl (13)

An unbiased estimator of Cl is defined as:

Ĉl =
1

2l + 1

m=l∑
m=−l

alma
∗
lm (14)

Note that the angular power spectrum Cl follows χ2 distribution.

11 / 39



Maximum Likelihood Estimation

The probability distribution P(Θ|d) (posterior) for model
parameters Θ given data d can be related to the probability
P(d|Θ) (likelihood) of an experiment giving data d for model
parameters Θ using the Bayes’ theorem:

P(Θ|d) =
P(d|Θ)P(Θ)

P(d)
(15)

where P(Θ) is called the prior and P(d) =
∑

P(d|Θ)P(Θ) is
used for the normalization purpose.

For the case of flat prior, posterior and likelihood are
proportional:

P(Θ|d) = P(d|Θ) = L(d|Θ) (16)

In Bayesian formalism we can easily incorporate new data in
analysis by considering the posterior of the old data as prior.
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Bayesian Analysis

Note that when likelihood/posterior is not Gaussian then the
average value of the parameter < θ > may not coincide with the
value of θ0 at which the likelihood/posterior is maximum.
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Errors in maximum Likelihood estimation

We are not only interested in finding the point Θ0 or < Θ >,
we are also also interested errors.

The spread of the likelihood function P(d|Θ) around the
maximum likelihood point Θ0 can be used to find the error
bars:

Expanding the likelihood function L = −2 log logP(d|Θ)
around the maximum likelihood point Θ0:

L(Θ) = L(Θ0)+(θi−θi0)
∂L(Θ)

∂θi

∣∣∣∣∣
θi=θi

0

+
1

2
(θi−θi0)(θj−θj0)

∂2L(Θ)

∂θi∂θj

∣∣∣∣∣
θi=θi

0

+....

(17)

Second derivative of the Likelihood function is called the
Hessian :

Hij =
∂2L(Θ)

∂θi∂θj
(18)
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There is an in-equality called the Cramer-Rao lower bound
which says that the error bars (variance) on any estimator
cannot be smaller than the inverse of information matrix I

Cij ≥
1

Iij
(19)

where I is defined as:

Iij =

〈
∂2L(Θ)

∂θi∂θj

〉
(20)

How accurately a parameter can be estimated from the
likelihood depends upon how sensitive the likelihood function
is on that parameter, which is quantified by the Hessian
matrix.
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Problems

1 Show that for a case when the noise is Gaussian, maximizing
likelihood is equivalent to minimization Chi-square.

2 Show that the maximum likelihood estimator is the minimum
variance estimator.

3 Show that finding the solution of the linear problem d = AΘ is
equivalent to finding of the maximum of the following function:

f (Θ) =
1

2
Θ′AΘ− d′Θ + c (21)

4 Show that the minimum chi-square solution of the model
y = c0 + c1x with data (xi , yi , σi ) is given by:

c0 =
S01S00 − S00S01

SS00 − S2
00

and c1 =
SS01 − S01S10

SS00 − S2
00

(22)

where S =
∑N

i=1 1/σ2
i and Sij =

∑N
k=1 x

iy j/σ2
k . Also find the error.
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Sometime likelihood is not much sensitive to individual
parameters (may not be Gaussian) but is highly sensitive to
some combinations of those.

For example, CMB Likelihood is almost Gaussian with respect
to the combination (Ωbh

2,Ωch
2, θ,A∗, tz) of cosmological

parameters [Chu et al. (2003)] where

A∗ =
A

76, 000

(
0.05Mpc−1

kpivot

)1−ns
e−2τ , (23)

and

t =
1√

Ωbh2
2ns−1 (24)
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Markov Chain Monte Carlo

Once we have the probability distribution P(Θ|d) for model
parameters Θ we can statistics of the parameters:

< Θ >=

∫
ΘdΘP(Θ|d) (25)

In practice, before carrying out the above integral we find out
the one dimensional probability distribution by marginalization
over other parameters:

P(θr ) =

∫
dθ1dθ2....dθr−1dθr+1...dθMP(θ1, θ2, ....sθM)

(26)
and

< θr >=

∫
θrdθrP(θr ) (27)
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Carrying out multi-dimensional integration is very expansive
i.e., computational cost grows as O(nM) where n is the
number of grid points along one direction and M is the
dimensionality of the parameter space.

If we can replace the multi-dimensional integration by
summation over a finite number of points which represent the
probability distribution function then computational cost
becomes manageable.

< Θ >=

∫
ΘdΘP(Θ|d) =

1

N

N∑
i=1

ΘiP(Θi |d) (28)

Markov-Chain Monte Carlo sampling samples the likelihood
function in such a way that there are more point in the region
where the likelihood function has the large values and less
where it has small values.
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Markov-Chain Monte Carlo

When we toss a coin n times then the outcome of the nth toss
does not depend on the outcome of any of the previous
outcomes.

In a Markov-Chain the probability of a random variable Xn to
have value xn at step n depends on the probability of the
variable Xn−1 to have the value xn−1 at step n − 1.

P(XN) = P(Xn,Xn−1)P(Xn−1) (29)

where P(Xn,Xn−1) is called the transition probability,
transition kernel or proposal density.

In most cases transition kernel is symmetric:

P(Xn,Xn−1) = P(Xn−1,Xn) (30)

The transition probability P(Xn,Xn−1) has the remarkable
property that after an initial burn-in period it generates a
sample which has the probability distribution P(X ).
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Example

We consider the following Gaussian transition probability:

P(xn|Xn−1) ∝ exp

[
−(Xn − Xn−1)2

2σ2

]
(31)

where σ is generally a fixed parameter called the step size. We can
go from (n − 1)th step to nth step using the above transition
probability using the Metropolis-Hasting algorithm.

The choice of proposal density can affect the way the
sampling algorithm works so it is advisable to use a proposal
density which is of the similar shape of the distribution we are
aiming to sample.

[Lewis & Bridle (2002)]
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Metropolis-Hesting Algorithm

The first step of the algorithm is to set the initial value of the
random variable i.e., X (n = 0) = X0 which should not be very
far from the best fit value (maximum likelihood value) of the
parameter.

Once the initial step is set, we can find a proposed value Y
for the (n + 1)th step using the proposal density P(Y |Xn).

In order to decide whether we should accept Y as Xn+1 we
compute the Metropolis ratio r

r =
P(Y )P(Xn|Y )

P(Xn)P(Y |Xn)
=

P(Y )

P(Xn)
for symmetric proposal density

If r ≥ 1 then we set Xn+1 = Y otherwise we accept Y with
probability r i.e., we draw a uniform random number U and
set Xn+1 = Y only when U > r .

[Gregory (2005)]
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CMB Likelihood

CMB temperature and polarization observations can constrain
cosmological parameters if the likelihood function can be
computed exactly.

Computing the likelihood function exactly in a brute force way
is computationally challenging since it involves inversion of
the covariance matrix i.e., O(N3) computation.

In Cosmological parameter estimation a theoretical model is
represented by its angular power spectrum Cl .

For a set cosmological parameters we can compute the
angular power spectrum Cl using publicly available Boltzmann
codes like CMBFAST and CAMB and try to fit that with
observed Cl .
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From Bayes theorem the posterior for the parameter Cl with data T
is given by:

P(Cl |T ) =
P(T |Cl)P(Cl)

P(T )
(32)

where Cl is the theoretical Cl and T is the observed sky map of
CMB anisotropies.

T (n̂) =
∑
lm

almYlm(n̂) (33)

Since computing the exact likelihood function is challenging,
approximations are generally made (Gaussian Likelihood, Gibbs
sampling etc).

L(T |Cl) ∝
1√
|S |

exp[−(TS−1T )/2] (34)

where the covariance matrix S is related to angular power spectrum:

< T (n̂i )T (n̂j) >= Sij =
∑
l

2l + 1

4π
ClPl(n̂i .n̂j) (35)

[Verde et al. (2003); Hamimeche & Lewis (2008)]
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In terms of Cl the likelihood function can be written as:

L(T |Cl) =
∏
lm

1√
Cl

exp[−|alm|2/(2Cl)] (36)

Since we observe only one sky so we cannot measure the
power spectra directly, but instead form the rotationally
invariant estimators, Cl , for full-sky CMB maps given by

Ĉl =
1

2l + 1

m=l∑
m=−l

|alm|2 (37)

Problem 5

Show that Ĉl as given by equation (37) is an unbiased estimator
i.e., < Ĉl >= Cl (true power spectrum).

Note that the likelihood has a maximum when Cl = Ĉl so Ĉl

is the MLE.
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Problem 6

From equation (36) show that:

χ2 = −2 log L(Ĉl |Cl) =
∑
l

(2l + 1)

[
log

(
Cl

Ĉl

)
+

Ĉl

Cl
− 1

]
(38)

This expression for likelihood does not consider:

Finite resolution of the detector - window function

Detector noise

Cut-sky fsky to avoid foreground etc., which leads correlations
among different multi-poles.

When all these factors are taken into account computing the
likelihood function becomes challenging.

26 / 39



CosmoMC

In general, cosmological parameters from a CMB experiment
like WMAP or Planck are estimated using a publicly available
Markov Chain Monte Carlo code called CosmoMC [Lewis &
Bridle (2002)].

CosmoMC has been successfully used to estimate
cosmological parameters from WMAP data and a detail
discussion and working of the code is also discussed in a
WMAP first year paper [Verde et al. (2003)]

CosmoMC used publicly available code CAMB [Lewis et al.
(2000)] for computing theoretical Cls.

WMAP team has provided a code for computing the
likelihood from the temperature and polarization data.
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Cosmological Parameters

S. No Parameter Description

1 Ωbh
2 physical baryon density

2 ΩDMh2 physical dark matter density (CDM+massive neutrinos)
3 θ 100 × ratio of the angular diameter distance to the LSS sound horizon
4 τ reionization optical depth
5 ΩK spatial curvature

6 fν neutrino energy density as fraction of ΩDMh2

7 w constant equation of state parameter for scalar field dark energy
8 ns spectral index for scalar power spectrum
9 nt spectral index for tensor power spectrum

10 nrun running for the index for scalar power spectrum

11 log [1010As ] Amplitude of the scalar power spectrum
12 r ratio of tensor to scalar primordial amplitudes at pivot scale
13 ASZ SZ template amplitude, as in WMAP
14 ΩΛ energy density (parameter) Cosmological constant
15 Age/Gyr Age of the universe
16 Ωm dark matter density
17 σ8 Mass variance at 8 Mpc
18 zre Redshift of the reionization
19 r10 tensor-scalar Cl amplitude at l=10
20 H0 Hubble parameter is H0 km/s/Mpc

CosmoMC has 20 parameters which can be estimated from a CMB
data set. Note that not all the parameters are independent, in fact
we can change just seven parameters (shown in red) to fit a CMB
data set (WMAP).
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How CosmoMC works?

Corresponding to every cosmological parameter θi we want to
estimate we give the (1) search range (2) an starting point
and guess (2) mean value and (3) standard deviation around
the mean.

At every step we compute the likelihood at current location Θ
in the parameter space and move to new location Θ1 in the
parameter space by taking a random step and compute:

r =
L(Θ1)

L(Θ1)
(39)

if r > 1 then we accept Θ1 as the new point in the chain
otherwise compare r with a uniform random number u and
accept Θ1 only when r > u.

We start multiple chains (random walks) in parallel and test
for a convergence criteria at every step.

Once we reach convergence, we compute the various
statistical measures from the chains.
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CosmoMC

A typical Markov chain in CosmoMC.
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CosmoMC

As a chain progresses χ2 = −2 log L decreases
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CosmoMC

From the chains we can plot the probability distribution for
parameters. 32 / 39



CosmoMC

We can also plot scatter and contour plots from the chains.
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Wilkisnon Microwave Anisotropy Probe (WMAP)
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WMAP: Orbit
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WMAP: Maps

[Bennett et al. (2013)]
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WMAP: Angular Power spectrum

[Hinshaw et al. (2013)]
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WMAP : Cosmological Parameters

[Hinshaw et al. (2013)]
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