High Performance Computing - Session 1

An Overview of Parallel Computation
Jayanti Prasad
http: //www.iucaa.ernet.in/ jayanti/

Inter-University Centre for Astronomy & Astrophysics
Pune, India (411007)

November 11, 2011

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

http://www.iucaa.ernet.in/~jayanti/

Plan of the Talk

@ Introduction

» Why Parallel Computation ?
» Performance
» Parallel Problems

o Platforms

» A Model Computer
» Parallel Platforms

@ Models of Parallel Programming

» Shared Memory Programming
» Distributed Memory Programming
» GPU Programming

@ Summary and Conclusions

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Why Parallel Computation 7

@ Solving problems fast (saving time and money !).
@ Solving more problems (concurrency !).

@ Solving large problems, or problems which are not possible to solve on
a single computer (discoveries !).

Examples:
e Pattern matching or search
@ Processing large data volume.

@ Simulations

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Performance

@ Processor:
» Higher clock rate (at present around 3 Ghz).
» More instructions per clock cycle.
» More number of transistors (at present around 1 billion).

@ Performance (and complexity) of processors doubles in
every 18 months (Moore’s law) and making faster
processors is difficult due to heating and speed of
light problem.

e Memory:

» Latency
» Bandwidth
» Hierarchy (caches)

@ So far the performance growth due to increase in the
clock rate has been 55% and that due to the number of
transistors has been 75%.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Processor

Processor

Capacitance=C
\Voltage=V

Processor

Frequency = f
Power = CV/2f

Capacitance=2.2C

Voltage=0.6V
Frequency = 0.57
Power =0.396 CV2f

The rate at which instructions are retired is the same in these two
cases, but the power is much less with two cores running at half
the frequency of a single core.

More cores with slow clock are preferred than one core
with fast clock.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Parallel Problems

@ Not all problems are parallel problems.

@ In general, there are always some sections of a large problem which
can be solved in parallel.

@ The gain in the computational time or speed up1 due to
parallel computation for a problem depends on the
fraction of the total time the problem spends in the
parallel sections (Amdahl’s law).

@ In most cases the speed up never varies linearly with the problem size,
and the number of processing units.

e If the time taken in communication or Input-Output (I0) is more than
the computation time, chances of performance gain due to parallel
computation are less.

ltime taken by a single processing unit/time taken by N processing units
Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 6 /30

Examples

@ Scalar Product: y
S=> AB
i—1

o Linear-Algebra: Matrix multiplication

Ak Byj

Il
iM=

@ Integration:

@ Dynamical Simulations:

m;(X; —X
f_ J\7J !
Z(|X —X,|)3/2

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 7 /30

How to do parallel computation ?

@ lIdentify the sections of your problem which are independent
(asynchronous) and so can be solved in parallel (concurrently).

@ Map the parallel sections following some efficient scheme
(decomposition), on the hardware resources you have, using some
software tools.

In general, there is a many to one mapping between the multi-dimensional
space of the parallel sections and the computing units.

foln——— > P (1)

where n is the dimensionality of the “problem space” and p is the
dimensionality of the “processing space”.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 8 /30

Modern Computer

Figure 1: John von Neamann in front of the computer he built at the Institute for Advanced Study
in Princeton (Courtesy of the Archives of the Institute for Advanced Study).

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Von Neumann Model (Architecture)
@ A memory containing both data and Instructions.

® A calculating unit capable of performing both
arithmetic and logical operations on the data.

@ A control unit which could interpret an instruction
retrieved from the memory and select alternative
courses of action based on the results of the previous
operations.

Logic
Unit (CA)

Program
Control
Unit (CC)

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 10 / 30

LRl

W

;l!lrt_

.l
e
.

A typical Blade of Cray CX1

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Model Computer

Flynn's taxonomy

@ Single-Instruction, Single-Data (SISD) - von Neumann

model.
@ Multiple-Instruction, Single-Data (MISD).
@ Single-Instruction, Multiple-Data (SIMD).
@ Multiple-Instruction, Multiple-Data (MIMD).

@ A sequential computer consists of a memory connected to a processor
via a datapath and all three components present bottlenecks to the
overall processing rate of a computer system.

@ New innovations leading to multiplicities in processing units,
datapaths, and memory units have been used to addresses these
bottlenecks.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 12 / 30

Parallel Platforms : Pipeline

@ A design technique to increase the instruction throughput (the
number of instructions that can be executed in a unit of time).

@ Split the processing of a computer instruction into a series of small
independent steps, which allows execution of multiple instructions.

Inatr. No. Pipolino Stnge
1 IF | 10 | Ex |MEM W8 |
2 F | D | EX jMeM we
3 | D | Ex MeM we
4 IF | D | EX MEM|
5 IF|ID|EX

g;':l'_‘ 1|2 |a|la|ls|s]|7

Basic five-stage pipeline in a RISC machine (IF = Instruction
Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory

access, WB = Register write back). In the fourth clock cycle

(the green column), the earliest instruction is in MEM stage, and

the latest instruction has not yet entered the pipeline.
Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011

13 / 30

Parallel Platforms : Vector Processors

@ A processor that performs one instruction on several data sets is
called a vector processor.

@ The most common form of parallel computation is in the form of
Single Instruction Multiple Data (SIMD) i.e., same computational
steps are applied on different data sets.

@ Problems which can be broken into small problems for parallelization
are called embarrassingly parallel problems e.g., SIMD.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 14 / 30

Parallel Platforms : Multi-core Processors

A single processor can have more than one computation units, called
cores, having their own resources for executing instructions
independently.

@ A multiprocessor system have many processors and each one of them
can have more than one cores. Note that just by looking on the
motherboard you can count the processors but not the cores.

@ A single core can support more than one threads.

@ A multi-core processor presents multiple virtual CPUs to the user and
operating system.

@ Note that in general all the cores of a processor share the main
memory and some cache memory.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 15 / 30

Parallel Platforms : Multi-core processors

Core 1 Core 2 Core 3 Core 4

Front-Side Bus Front-Side Bus

T T
T T

memory controller

Quad-Core AMD Opteron (left) vs. Intel Quad-Core Xeon architecture (right) as exam-
ples for a hierarchical design

-

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Parallel Platforms: Multi-core processors

[TABLE 3] TABLE OF GENERAL-PURPOSE SERVER AND MOBILE/EMBEDDED MULTICORES.

CONSISTENCY MAX.
MODEL POW

IsA MICROARCHITECTURE NUMBER OF CORES ~ CACHE COHERENCE INTERCONNECT ER FREQUENCY OPS/CLOCK

AMD PHENOM X86 THREE-WAY OUT-OF-ORDER FOUR 64 KBILT AND DL1/ DIRECTORY ~ POINTTOPOINT ~ PROCESSOR 140W 2.5 GHZ- 12-48 OPS/

[.ns SUPERSCALAR, 128-8 SIMD CORE, 256 KB L2/CORE, 30GHZ €LocK
26MBL3

INTEL CORE I7 X86 FOUR-WAY OUROF-ORDER, TWO TO EIGHT 32KBILT AND DL/ BROADCAST ~ POINTTOPOINT ~ PROCESSOR 130W 266 GHZ- 8-128 OPS/

(2,151 TWO-WAY SMT, 128-8 SIMD CORE, 256 KB L2/CORE, 333GHZ CLOCK
8MBL3

SUNNIAGARA SPARC TWO-WAY IN-ORDER, EIGHT 16KBILI ANDEKBDLI/ DIRECTORY CROSSBAR TOTALSTORE ~ 60-123 900MHZ- 16 OPS/CLOCK

T2[16],.[17] EIGHFWAY SMT CORE, 4 MB L2 ORDERING w 1.4 GHZ

INTELATOM [18], X86 TWO-WAY IN-ORDER, ONE TO TWO 32K8ILT AND DL/ BROADCAST BUS PROCESSOR ~ 2-8W S00MHZ- 2-16 OPY/

[s] TWO-WAY SMT, 128-8 SIMD CORE, 512 KB L2/CORE 1.6 GHZ CLOCK

ARM CORTEX- ARM THREE-WAY OUT-OF-ORDER ONE TO FOUR (1632,64)KBILI AND ~ BROADCAST BUS WEAKLY TW(NO WA 3-12 OPS/

AG*[6] DLI/CORE, UPTO (ORDERED CACHE) CLOCK
2MBL2

XMOS XS1-G4 XCORE ONE-WAY IN-ORDER, FOUR 64 KB LCLSTORE/CORE NONE CROSSBAR NONE 02W 400MHZ 4 OPS/CLOCK

1] EIGHFWAY SMT

“Numbers are estimates b Gesign i offered only core.

[TABLE 4] TABLE OF HIGH-PERFORMANCE MULTICORES.

CONSISTENCY MA)(

ISA MICROARCHITECTURE NUMBER OF CORES ~ CACHE COHERENCE INTERCONNECT MODEL POWER FREQUENCY OPS/CLOCK
AMD RADEON NA - FIVEWAY VUW 160 CORES, 16 CORES 16 KB LCL STORE/SIMD ~ NONE A INONE 150W 750MHZ 800-1,600
R700 [20] PER SIMD BLOCK, TEN BLOCK OPSICLOCK
BLOCKS
NVIDIA G200 NA ONEAWAY IN-ORDER 240, EIGHT CORES PER 16 KB LCLSTOREEIGHT NONE A NONE 183IW 1.2GHZ 240-720 OPS/
(8], 21] SIMD UNIT, 30 SIMD CORES. CLoCK
UNITS
INTEL LARRABEE' [22] X86 TWO-WAY lN DRDER 4-WAY UPTO48' 32K8 \il AND 32 KBDLY/ BROADCAST BIDIRECTIONAL PROCESSOR A NA 95 1 536 OPS/
ST, 512+ S| CORE, 4 RING
IBMCELL[9], [23] POWER TWO-WAY w ORDER, 1/PPU, EIGHT SPUS PPU; 32 KE LU AND 32 KB NONE BIDRECTIONAL ~ WEAK (PPU), 100W 3.2 GHZ 72 OPS/CLOO(
TWO-WAY SMT PPU, 2-WAY DL1, 512 KBL2; SPU: RING INONE (SPU)
IN-ORDER 128-8 SIMD SPU 256'KB LCL STORE
MICROSOFT POWER TWO-WAY IN-RDER, TWO- THREE 32KBILT AND 32 KBDL1/ BROADCAST CROSSBAR WEAKLY 60W 32GHZ 624 OPS/
XENON [10] WAY SMT, 128-8 SIMD CORE, 1 MB L2 ORDERED CLOCK

Al values are estimates 25 processor is not yet in production.

Jayanti Prasad (IUCAA-Pur

An Overview of Parallel Compuata

Parallel Platforms : Clusters

BEOWULF CLUSTERS

Beowulf clusters are designed for solving high-performance computing
tasks. These clusters are built using commodity hardware—such as personal
computers—that are connected via a simple local area network. Interestingly,
a Beowulf cluster uses no one specific software package but rather consists
of a set of open-source software libraries that allow the computing nodes
in the cluster to communicate with one another. Thus, there are a variety of
approaches for constructing a Beowulf cluster, although Beowulf computing
nodes typically run the Linux operating system. Since Beowulf clusters
require no special hardware and operate using open-source software that
is freely available, they offer a low-cost strategy for building a high-
performance computing cluster. In fact, some Beowulf clusters built from
collections of discarded personal computers are using hundreds of computing
nodes to solve computationally expensive problems in scientific computing.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Parallel Platforms : Graphical Processing Units (GPUs)

v
Setup Rstr/ZCull

Architectural overview of Nvidia GeForce 8800.

So, how can NVIDIA offer hundreds of thread processors while the rest of the
industry can deliver only dual- and quad-core processors?

NVIDIA designers use a common architectural building
block, called a multiprocessor, that can be replicated as
many times as required to provide a large number of
processing cores (or thread processors) on a GPU board for
a given price point.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Parallel Platforms :Graphical Processing Units (GPUs

1200 - - - - - —
o= AMD (GPU)
=% NVIDIA (GPU)
1000 | #=# |nte| (CPU
800+ Many-core GPU |
w
o
Q 600
[T
0]

400 - / |
200- ,-U_/ Multicore CPU |
P al-core

o » ==
2001 2002 2003 2004 2005 2006 2007 2008 2009
Year Courtesy: John Owens

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

Parallel Platforms : Accelerated Processing Units (APUs)

Using its Fusion technology, AMD incorporates multi-core

CPU (x86) technology with a powerful DirectX capable
discrete-level graphics and parallel processing engine onto
a single die to create the first Accelerated Processing

Unit (APU).

2
[
o
[
[
[
oy i
"

November 04, 2011 21 /30

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

SHARED MEMORY SYSTEM

A

CFU-GFU SYSTEM

DISTRIBUTED MEMORY SYSTEM

Y Y

bR

O

MEMORY

CFU

GFU CORE

Jayanti Prasad (IUCAA-Pune)

An Overview of P

Shared Memory Programming

@ Shared memory programming can be done on a system which has
more than one computing units (core) sharing the same physical
memory.

@ The data between different computing units is shared in the form of
shared variables.

@ There are many tools (Application Programming Interfaces or API)
like OpenMp, pthreads and Intel Threading Blocks (ITBB) available
for shared memory programming.

@ Note that shared address space model is different from shared
memory model.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 23 /30

Processes and Threads

The building blocks of a Linux system are processes.
Each process has it own data, instructions and memory space.

Threads are sub-units of processes and easy to create (because no
data protection is needed) and share memory space.

The ability of threads to run simultaneously can be used to do many
independent tasks concurrently.

Threading API provide tools to assign id to threads, share data and
instruction and for synchronization.

In general, multi-threading problems follow the fork-join model.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 24 / 30

Fork-Join

MASTER THREAB - SERIAL SECTION

PARALLEL
SECTION

SERIAL SECTION

FARALLEL
SECTION

SERIAL SECTIOr

Jayanti Prasad (IUCAA-Pune) " An Overview of Parallel &o_r-ﬁpL_n-a;tatl

Distributed Memory Programming

@ Data and instructions between a set of homogeneous computing units
are shared by explicit communications using tools (API) like MPI.

e Each computing unit is assigned a unique identification number (id)
which is used to establish communication and share the data and
instructions.

e Communication between computing units may be one to one (send,
receive type) or it can be collective (broadcast, scatter, gather etc.).

@ There is no upper limit on the number of the computing units the
system can have, however, communication complexity and overhead
makes it difficult to make a very large system.

@ In general, the computation follows the master-slave paradigm.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 26 / 30

Master-Slave Model

‘ Slave 1 ‘ ‘ Slave 2 ‘ ‘ Slave 3 ‘ ‘Slﬂve‘1 ‘

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

GPU Programming

@ On a General Purpose Graphical Processing Unit (GP-GPU) a large
number of processing units (cores) are available which can work
simultaneously.

@ The sections of a program which take a lot of time, and can be easily
split into tasks which can be run in parallel, can be transferred to the
GPU.

@ GPUs are very good for SIMD system.

@ The GPU and CPU do not share the memory space so the data has to
be explicitly copied from the CPU to the GPU and back.

e For Nvidia GPUs a C like programming environment (CUDA) is
available.

@ OpenCL can be used to program any GPGPU.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 28 / 30

Summary and conclusions

@ It is not easy to make a super-fast single processor so multi-processor
computing is the only way to get more computing power.

@ When more than one processors (cores) share the same memory,
shared memory programming is used e.g., pthreads,OpenMp, ITBB
etc.

@ Shared memory programming is fast and it easy to get linear scaling
since communication is not an issue.

@ When processors do not share memory, explicit communication is
used as in MPIl and PVM.

@ Distributed memory programming is the main way to solve large
problems (when thousands of processors are needed).

e General Purpose Graphical Processing Units (GP-GPU) can provide
very high performance at very low cost, however, programming is
somewhat complicated and parallelism is limited to only SIMD.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 29 / 30

Thank You !

http://www.iucaa.ernet.in/ jayanti/

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation

http://www.iucaa.ernet.in/~jayanti/

	Introduction
	Why Parallel Computation?
	Performance
	Parallel Problems

	Platforms
	Model Computer
	Parallel Platforms

	Parallel Programing
	Shared Memory Programming
	Distributed Memory Programming
	GPU Programming

	Summary and conclusions

