
High Performance Computing - Session 1
An Overview of Parallel Computation

Jayanti Prasad
http://www.iucaa.ernet.in/ jayanti/

Inter-University Centre for Astronomy & Astrophysics
Pune, India (411007)

November 11, 2011

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 1 / 30

http://www.iucaa.ernet.in/~jayanti/

Plan of the Talk

Introduction
I Why Parallel Computation ?
I Performance
I Parallel Problems

Platforms
I A Model Computer
I Parallel Platforms

Models of Parallel Programming
I Shared Memory Programming
I Distributed Memory Programming
I GPU Programming

Summary and Conclusions

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 2 / 30

Why Parallel Computation ?

Solving problems fast (saving time and money !).

Solving more problems (concurrency !).

Solving large problems, or problems which are not possible to solve on
a single computer (discoveries !).

Examples:

Pattern matching or search

Processing large data volume.

Simulations

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 3 / 30

Performance

Processor:
I Higher clock rate (at present around 3 Ghz).
I More instructions per clock cycle.
I More number of transistors (at present around 1 billion).

Performance (and complexity) of processors doubles in

every 18 months (Moore’s law) and making faster

processors is difficult due to heating and speed of

light problem.

Memory:
I Latency
I Bandwidth
I Hierarchy (caches)

So far the performance growth due to increase in the

clock rate has been 55% and that due to the number of

transistors has been 75%.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 4 / 30

More cores with slow clock are preferred than one core

with fast clock.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 5 / 30

Parallel Problems

Not all problems are parallel problems.

In general, there are always some sections of a large problem which
can be solved in parallel.

The gain in the computational time or speed up1 due to

parallel computation for a problem depends on the

fraction of the total time the problem spends in the

parallel sections (Amdahl’s law).

In most cases the speed up never varies linearly with the problem size,
and the number of processing units.

If the time taken in communication or Input-Output (IO) is more than
the computation time, chances of performance gain due to parallel
computation are less.

1time taken by a single processing unit/time taken by N processing units
Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 6 / 30

Examples

Scalar Product:

S =
N∑
i=1

AiBi

Linear-Algebra: Matrix multiplication

Cij =
M∑
k=1

AikBkj

Integration:

y = 4

∫ 1

0

dx

1 + x2

Dynamical Simulations:

fi =
N∑
j=1

mj(~xj − ~xi)

(|~xj − ~xi |)3/2

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 7 / 30

How to do parallel computation ?

1 Identify the sections of your problem which are independent
(asynchronous) and so can be solved in parallel (concurrently).

2 Map the parallel sections following some efficient scheme
(decomposition), on the hardware resources you have, using some
software tools.

In general, there is a many to one mapping between the multi-dimensional
space of the parallel sections and the computing units.

f : I n −−− > I p (1)

where n is the dimensionality of the “problem space” and p is the
dimensionality of the “processing space”.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 8 / 30

Modern Computer

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 9 / 30

Von Neumann Model (Architecture)

A memory containing both data and Instructions.

A calculating unit capable of performing both

arithmetic and logical operations on the data.

A control unit which could interpret an instruction

retrieved from the memory and select alternative

courses of action based on the results of the previous

operations.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 10 / 30

A typical Blade of Cray CX1

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 11 / 30

Model Computer

Flynn’s taxonomy

Single-Instruction, Single-Data (SISD) - von Neumann
model.

Multiple-Instruction, Single-Data (MISD).

Single-Instruction, Multiple-Data (SIMD).

Multiple-Instruction, Multiple-Data (MIMD).

A sequential computer consists of a memory connected to a processor
via a datapath and all three components present bottlenecks to the
overall processing rate of a computer system.

New innovations leading to multiplicities in processing units,
datapaths, and memory units have been used to addresses these
bottlenecks.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 12 / 30

Parallel Platforms : Pipeline

A design technique to increase the instruction throughput (the
number of instructions that can be executed in a unit of time).

Split the processing of a computer instruction into a series of small
independent steps, which allows execution of multiple instructions.

Basic five-stage pipeline in a RISC machine (IF = Instruction

Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory

access, WB = Register write back). In the fourth clock cycle

(the green column), the earliest instruction is in MEM stage, and

the latest instruction has not yet entered the pipeline.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 13 / 30

Parallel Platforms : Vector Processors

A processor that performs one instruction on several data sets is
called a vector processor.

The most common form of parallel computation is in the form of
Single Instruction Multiple Data (SIMD) i.e., same computational
steps are applied on different data sets.

Problems which can be broken into small problems for parallelization
are called embarrassingly parallel problems e.g., SIMD.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 14 / 30

Parallel Platforms : Multi-core Processors

A single processor can have more than one computation units, called
cores, having their own resources for executing instructions
independently.

A multiprocessor system have many processors and each one of them
can have more than one cores. Note that just by looking on the
motherboard you can count the processors but not the cores.

A single core can support more than one threads.

A multi-core processor presents multiple virtual CPUs to the user and
operating system.

Note that in general all the cores of a processor share the main
memory and some cache memory.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 15 / 30

Parallel Platforms : Multi-core processors

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 16 / 30

Parallel Platforms: Multi-core processors

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 17 / 30

Parallel Platforms : Clusters

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 18 / 30

Parallel Platforms : Graphical Processing Units (GPUs)

So, how can NVIDIA offer hundreds of thread processors while the rest of the

industry can deliver only dual- and quad-core processors?

NVIDIA designers use a common architectural building

block, called a multiprocessor, that can be replicated as

many times as required to provide a large number of

processing cores (or thread processors) on a GPU board for

a given price point.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 19 / 30

Parallel Platforms :Graphical Processing Units (GPUs

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 20 / 30

Parallel Platforms : Accelerated Processing Units (APUs)

Using its Fusion technology, AMD incorporates multi-core

CPU (x86) technology with a powerful DirectX capable

discrete-level graphics and parallel processing engine onto

a single die to create the first Accelerated Processing

Unit (APU).

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 21 / 30

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 22 / 30

Shared Memory Programming

Shared memory programming can be done on a system which has
more than one computing units (core) sharing the same physical
memory.

The data between different computing units is shared in the form of
shared variables.

There are many tools (Application Programming Interfaces or API)
like OpenMp, pthreads and Intel Threading Blocks (ITBB) available
for shared memory programming.

Note that shared address space model is different from shared
memory model.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 23 / 30

Processes and Threads

The building blocks of a Linux system are processes.

Each process has it own data, instructions and memory space.

Threads are sub-units of processes and easy to create (because no
data protection is needed) and share memory space.

The ability of threads to run simultaneously can be used to do many
independent tasks concurrently.

Threading API provide tools to assign id to threads, share data and
instruction and for synchronization.

In general, multi-threading problems follow the fork-join model.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 24 / 30

Fork-Join

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 25 / 30

Distributed Memory Programming

Data and instructions between a set of homogeneous computing units
are shared by explicit communications using tools (API) like MPI.

Each computing unit is assigned a unique identification number (id)
which is used to establish communication and share the data and
instructions.

Communication between computing units may be one to one (send,
receive type) or it can be collective (broadcast, scatter, gather etc.).

There is no upper limit on the number of the computing units the
system can have, however, communication complexity and overhead
makes it difficult to make a very large system.

In general, the computation follows the master-slave paradigm.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 26 / 30

Master-Slave Model

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 27 / 30

GPU Programming

On a General Purpose Graphical Processing Unit (GP-GPU) a large
number of processing units (cores) are available which can work
simultaneously.

The sections of a program which take a lot of time, and can be easily
split into tasks which can be run in parallel, can be transferred to the
GPU.

GPUs are very good for SIMD system.

The GPU and CPU do not share the memory space so the data has to
be explicitly copied from the CPU to the GPU and back.

For Nvidia GPUs a C like programming environment (CUDA) is
available.

OpenCL can be used to program any GPGPU.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 28 / 30

Summary and conclusions

It is not easy to make a super-fast single processor so multi-processor
computing is the only way to get more computing power.

When more than one processors (cores) share the same memory,
shared memory programming is used e.g., pthreads,OpenMp, ITBB
etc.

Shared memory programming is fast and it easy to get linear scaling
since communication is not an issue.

When processors do not share memory, explicit communication is
used as in MPI and PVM.

Distributed memory programming is the main way to solve large
problems (when thousands of processors are needed).

General Purpose Graphical Processing Units (GP-GPU) can provide
very high performance at very low cost, however, programming is
somewhat complicated and parallelism is limited to only SIMD.

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 29 / 30

Thank You !

http://www.iucaa.ernet.in/ jayanti/

Jayanti Prasad (IUCAA-Pune) An Overview of Parallel Compuatation November 04, 2011 30 / 30

http://www.iucaa.ernet.in/~jayanti/

	Introduction
	Why Parallel Computation?
	Performance
	Parallel Problems

	Platforms
	Model Computer
	Parallel Platforms

	Parallel Programing
	Shared Memory Programming
	Distributed Memory Programming
	GPU Programming

	Summary and conclusions

