High Performance Computing - Session 2

Shared Memory Programming
Jayanti Prasad
http://www.iucaa.ernet.in/ jayanti/

Inter-University Centre for Astronomy & Astrophysics
Pune, India (411007)

November 15, 2011

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

http://www.iucaa.ernet.in/~jayanti/

Plan of the Talk

@ Introduction
» What is OpenMP 7
» The Hello World program !
» Function calls
» Parallel for

Private and Shared variables
» Private and Shared variables
» First private and last private

Sheduling
Synchronization

» Barrier
» Critical

Examples

Problems

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

What is OpenMP 7

@ OpenMP is a shared memory application programming interface (API).

@ OpenMP is not a new programming language and OpenMP programs
are written just other C or FORTRAN programs, with some added
features.

@ Since OpenMP is based on threading programming model so it is
useful on shared memory systems in which we have more than one
computing elements (cores) sharing the same main memory.

@ There is very less communication overhead in data sharing between
different threads so OpenMP is very fast.

@ OpenMP provides tools, in the form of function calls, pragmas and
clauses for data sharing and thread coordination.

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming November 15, 2011 3/18

The Hello World Program !

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<math.h>

4 #include<omp.h>

5

6 #define NUMTHREADS 4

7

8 dnt main(int argc, char *argv[]){
9 int myid, numthreads;

10

11 omp_set_num_threads (NUMTHREADS) ;
12

13 #pragma omp parallel

14 {

15

16 myid = omp_get_thread_num();
17

18 numthreads = omp_get_num_threads ();
19

20 printf ("Hello World from %d of %d threads ! \n",myid,numthreads);
21

22 }

23 return(0);

24 ¥

Compilation

gcc demol.c -fopenmp

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

Things you must do !

@ Include the header file (line 4)

@ Specify the number of threads (line 6)

@ Set the number of threads (line 11)

@ Use OpenMP pragma (line 13)

@ Have a parallel block (between line 14 and 22)

Three important functions

omp_set_num _threads();
omp_get_get_thread_num();
omp_get_num_threads();

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

OpenMP Parallel For

1 #pragma omp parallel

2

3 for(i=0; i < n; i++) private(i,myid)

4 {

5

6 myid = omp_get_thread_num();

7

8 printf ("Hello World from %d of %d threads ! \n",myid,numthreads);
9

10 }

Note that ’go to’ and ’exit’ type of statements are not
allowed inside a parallel loop.

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

OpenMP Clauses : private and shared

o Variables which are modified by every thread inside the for loop must
be declared private .

@ Every thread has it own copy of private variables.

@ Loop controlling variable is always private and its value is undefined
after the parallel loop has ended.

@ Variable which have common values for all the threads are declared
shared .

o By default all variables are shared variable.

@ By declaring a variable firstprivate the private copies of the
variables are initialized from the original variables existing before the
construct.

o By declaring a variable lastprivate the value of the variable is set
to the value which the last iteration of the loop.

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming November 15, 2011 7 /18

firstprivate

=
COONOU D WNH

PN RN NN R e e
AREONROOONOO & WN =

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<omp.h>
int main(int argc, char xargv[]1){
int numthreads,i,indx,myid;
if (arge < 2){
fprintf (stderr,"./a.out <numthreads>\n");
return(-1);
}
numthreads = atoi(argv[1]);
omp_set_num_threads (numthreads);
indx = 3;

#pragma omp parallel firstprivate(indx) private(myid)
//#pragma omp parallel private(myid,indx) // this is
{

myid = omp_get_thread_num();
indx += myid;
printf ("my id=%d indx=%d\n",myid,indx);

printf ("After the parallel region: indx=%d\n",indx);
return(0);

}

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

wrong

lastprivate

©CO~NOU A WNR

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<omp.h>

int main(int argc, char xargv[]1){
int numthreads,i,n,indx,myid;

if (arge < 3){

fprintf (stderr,"./a.out <numthreads> <num points> \n");

return(-1);

}

numthreads = atoi(argv[1]);

omp_set_num_threads (numthreads);

n = atoi(argv[2]);

#pragma omp parallel for private (i) lastprivate (indx)
//#pragma omp parallel for private (i) private(indx) // this is wrong

for(i=0; i < mn; i++){
indx = i;

printf ("After the parallel region: indx=%d\n",indx);

return(0);

}

Jayanti Prasad (IUCAA-Pune)

Shared Memory Programming

Scheduling

@ The schedule clause is used to specify how the loop iterations are
distributed amoung threads.

@ In general the work distribution is done using “chunks” which are
defined as contiguous, nonempty subsets of the iteration space.

@ In case of static schedule (default) the chunks are assigned to the
threads statically in a round-robin manner, in the order of the thread
number. The last chunk to be assigned may have a smaller number of
iterations. You know which thread will get what.

@ In case of dynamic schedule the iterations are assigned to threads as
the threads request them. The thread executes the chunk of
iterations then requests another chunk until there are no more chunks
to work on. You do not know which thread will get what.

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming November 15, 2011 10 / 18

Scheduling

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<math.h>

4 #include<omp.h>

5 4nt main(int argc, char *argv[]){
6 int numthreads,i,n,myid;

7

8 if (arge < 3){

9 fprintf (stderr,"./a.out <numthreads> <num points> \n");
10 return(-1);

11 }

12

13 numthreads = atoi(argv[1]);

14 omp_set_num_threads (numthreads);
15 n = atoi(argv[2]);

16

17 //#pragma omp parallel for schedule (static) private(i,myid)
18 #pragma omp parallel for schedule (dynamic) private(i,myid)
19 for(i=0; i < n; i++){

21 myid = omp_get_thread_num();

23 printf ("I am thread %d and doing %d\n",myid,i);

25 }
26 return(0);

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

Example : N Body kernal

©O~NOU A WNR

#pragma omp parallel for private (i,j,dr2,1) shared (npart,ndim,r,f)
for(i=0; i < npart; i++){
for(j=0; j < npart; j++){
if (i '=3){
dr2 = eps2;
for(1=0; 1 < ndim; 1++){
dr[1] = r[l+ndim*jl-r[l+ndim*il;
dr2 += dr[1] * dr[1];
}
for(1=0; 1 < ndim; 1++){
f[1l+ndim*i] += MG * dr[1]/(dr2*xsqrt(dr2));
}
}
}
}

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

schedule (static)

Syncronization

@ Barrier : This makes sure that no thread moves ahead unless all
threads have done the job i.e., reached a point. In most cases it is
unnecessary.

@ Critical : This provides means to ensure that multiple threads do
not attempt to update the same shared data simultaneously. By
declaring a block critical we can make sure that only thread executes
it at a time.

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

Example : OpenMP Barrier

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<math.h>

4 #include<omp.h>

5 #include<sys/time.h>

6

7 dnt main(int argc, char *argv[]){

8 int numthreads ,myid;

9

10 if (arge < 2){

11 fprintf (stderr,"./a.out <numthreads>\n");
12 return(-1);

13 }

14

15 numthreads = atoi(argv[1]);

16 omp_set_num_threads (numthreads);

17

18 #pragma omp parallel private(myid)

19

20 myid = omp_get_thread_num();

21 if (myid < omp_get_num_threads ()/2)
22 system("sleep 3");

23 printf ("thread %d: before\n",myid);
24

25 #pragma omp barrier

26 printf ("thread %d: after\n",myid);
27

28 }

29 return(0);

30

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

Example : OpenMP Ciritical

©CO~NOU A WN R

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

#include<omp.h>

int main(int argc, char xargv[]1){

4nt i, num_threads ,n,TID, sumLocal,sum,*a;

if (arge < 2){
fprintf (stderr,"./timer_omp <num threads> <num_points> \n");
return(-1);

}
num_threads = atoi(argv([1]);
n = atoi(argv[2]);
a = (int *)malloc(n*sizeof(int));

for(i=0; i < n; i++)
alil = i;

omp_set_num_threads (num_threads);

sum = O0;

#pragma omp parallel shared(n,a,sum) private(TID,sumLocal)

TID = omp_get_thread_num();
sumLocal = 0;

#pragma omp for

for (i=0; i<n; i++)
sumLocal += al[il;

#pragma omp critical (update_sum)

sum +=_sumlocal;

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

Examples

hello_world_omp.c
scalar_product_omp.c
matrix_vector_omp.c
compute_pi_omp.c
prime_number_omp.c
nbody_kernal _omp.c
barrier_omp.c
critical_omp.c

first private_omp.c

last_private_omp.c

©6 000000000

schedule_omp.c

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming

Problems
© Gravitaional force acting on a system of N bodies is given by:

R e), &)

RNCE PR

write a parallel program using OpenMP which can compute the force
in parallel and compare the time taken by the serial and parallel code.

@ Show that for a power law model with P(k) o k" the mass varaince
is given by o2(r) o r™ and compute the value of m by doing the

following neumerical integration using OpenMP :

Kmax 3 i 2
= dk k*P(k) sin kr — kr cos kr
2
= - 2
o (1) /k ko2 [3(K3)} @)

‘min

try for different values of n in the range (—3,1).

Jayanti Prasad (IUCAA-Pune) Shared Memory Programming November 15, 2011 17 / 18

Thank You !

Jayanti Prasad (IUCAA-Pun Shared Memory Programming

	Introduction
	What is OpenMP
	The Hello World !
	Function Calls
	Parallel For

	Private and Shared variables
	First private and last private

	Scheduling
	Syncronization
	Examples
	Problems

