
High Performance Computing - Session 3
Shared Memory Programming with pthreads

Jayanti Prasad
http://www.iucaa.ernet.in/ jayanti/

Inter-University Centre for Astronomy & Astrophysics
Pune, India (411007)

February 01, 2012

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 1 / 24

http://www.iucaa.ernet.in/~jayanti/

Why we should bother about threads ?
1 At present almost all desktops/laptops come with multi-core processors

which can be fully exploited only by multi-thread programming.
2 Multi-thread programming is much more efficient than multi-processors

programing (MPI) due to faster communication (P-M : 30 GBPS, P-P:
5 GBPS).

3 Multi-GPU systems and clusters with multi-core processors can be used
more efficiently by incorporating multi-thread programming (hybrid
programming).

Why pthreads ?
1 pthreads provide better control on threads.
2 pthreads are more natural to a Linux system with C programming.
3 pthreads are very light and versatile.

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 2 / 24

Plan of the Talk

Introduction
I Processes
I Threads

Posix threads
I What is pthreads
I Creating and joining pthreads
I Race condition and Mutex locks

Examples

Problems

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 3 / 24

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 4 / 24

Linux Processes

A process on a Linux system is an “object” through which the
resources used by a program like memory, processor time and IO are
managed and monitored.

Processes are building blocks of any Linux system and can run in the
“kernel” space or in the “user space”.

A process consists of an address space (a set of memory pages) and a
set of data structures.

The address space of a process contains the code and libraries that
the process is executing,the processs variables, its stacks, and various
extra information needed by the kernel while the process is running.

Some of the common Linux command to monitor and manage
processes are ps -ef, top, strace, kill etc.

Process

Program = Instruction + data
Process = Program in action

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 5 / 24

Processs address contains

The current status of the process (sleeping, stopped, runnable, etc.)

The execution priority of the process

Information about the resources the process has used

Information about the files and network ports the process has opened

The processs signal mask (a record of which signals are blocked)

The owner of the process

In a Linux/Unix system processes execute asynchronously
(independent from each other) even when there is only one processor.

Processes are created using fork command on a Linux/Unix system.

Processes can be killed by kill -9 command on a Linux/Unix system.

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 6 / 24

Threads

Threads are light weight sub-processes within a process (examples).
For example, when we open a new tab in Internet browser we launch
a new thread.

Threads inherit many attributes of a the parent process (such as the
processs address space).

Multiple threads can execute concurrently (may be not at the same
time) within a single process under a model called multi-threading.

In a multi-thread process the processor can switch execution resources
between threads, resulting in concurrent execution.

Concurrency on a single processor (core) system indicates that more
than one thread is making progress, but the threads are not actually
running simultaneously.

On a multi-core system each thread in the process can run
concurrently on a separate core i.e., true parallelism.

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 7 / 24

What is pthreads ?

pthreads (Portable Operating System Interface Threads) is an
Application Programming Interface (API) or library, which can be
used for shared memory/address space programming.

pthreads library provides more than one hundred functions to
manage threads, however, a very few (less than 10) are in general
commonly used.

When a thread is created, a new thread of control is added to the
current process.

Every process has at least one thread of control, in the program’s
main() routine.

Each thread in the process runs simultaneously, and has access to the
calling process’s global data.

In addition each thread has its own private attributes and call stack.

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 8 / 24

Managing pthreads

To create a new thread, a running thread calls the pthread create()
function, and passes a pointer to a function for the new thread to run.

One argument for the new thread’s function can also be passed, along
with thread attributes.

The execution of a thread begins with the successful return from the
pthread create() function.

The thread ends when the function that was called with the thread
completes normally.

A thread can also be terminated if the thread calls a pthread exit()
routine, or if any other thread calls pthread cancel() to explicitly
terminate that thread.

When two or more concurrently running threads access a shared data
item and the final result depends on the order of execution, we have a
race condition.

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 9 / 24

Creating pthreads

1 #include <pthread.h>

2
3 pthread_t thread[num_threads];

4
5 void *foo(void *);

6 void *arg;

7
8 int i;

9
10 for(i=0; i < num_threads; i++){

11 pthread_create (& thread[i], NULL ,foo ,arg);

12 }

Compilation

gcc program.c -lpthread -lm

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 10 / 24

Joining threads

1 #include <pthread.h>

2
3 pthread_t thread[num_threads];

4
5 void *status;

6 /* waiting to join thread "tid" with status */

7
8 for(i=0; i < num_threads; i++){

9 pthread_join(thread[i], &status);

10 }

11
12 /* waiting to join thread "tid" without status */

13
14 for(i=0; i < num_threads; i++){

15 pthread_join(thread[i], NULL);

16 }

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 11 / 24

Race condition

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 12 / 24

Race condition

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 13 / 24

Race condition

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 14 / 24

Mutex Lock

1 #include <pthread.h>

2
3 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

4
5 pthread_mutex_lock (&mutex);

6
7 counter ++;

8
9 pthread_mutex_unlock (&mutex);

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 15 / 24

Program 1 : hello world1 pthreads.c

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<pthread.h> // must be included

4
5 // function which will be executed by every thread in parallel

6 void *tfunc(void *arg){ // one argument can be passed

7 long my_id = (long) arg;

8 fprintf(stdout ," Hello World from %ld\n",my_id);

9 }

10
11 int main(int argc , char *argv []){

12 int num_threads;

13 long i;

14 pthread_t *t; // thread object

15 if(argc < 2){

16 fprintf(stderr ,"./ hello_world <# threads >\n");

17 return (-1);

18 }

19 num_threads=atoi(argv [1]); // # of threads

20 t = (pthread_t *) malloc(num_threads*sizeof(pthread_t));

21 // create threads

22 for(i=0; i < num_threads; i++)

23 pthread_create (&t[i],NULL ,tfunc ,(void *)i);

24
25 //join threads

26 for(i=0; i < num_threads; i++)

27 pthread_join(t[i],NULL) ;

28
29 return (0);

30 }

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 16 / 24

Program 2 : hello world2 pthreads.c

1 /* This structure can be used to send data to the function

2 executed by every thread in parallel */

3
4 typedef struct{

5 int thread_id;

6 char msg [100];

7 } thread_data;

8
9 // this function still done not return anything

10
11 void *tfunc(void *arg){

12 thread_data *p = (thread_data *)arg; // p is a pointer to a structure

13 int my_id = p-> thread_id;

14 fprintf(stdout ," %s from %d\n",p->msg ,my_id);

15 }

16
17 int main(int argc , char *argv []){

18 pthread_t *t;

19 thread_data *q; // this is an array

20
21 q = (thread_data *) malloc(num_threads*sizeof(thread_data));

22
23 for(i=0; i < num_threads; i++){

24 q[i]. thread_id = i;

25 sprintf(q[i].msg ,"Hello World");

26 pthread_create (&t[i],NULL ,tfunc ,(void *)(q+i));

27 }

28
29 // join thread

30
31 }

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 17 / 24

Program 3 : return pthreads.c

1 void* child_thread(void * param){

2 long id , jd;

3 id = (long)param;

4 jd = id *id;

5 return (void *)jd;

6 }

7
8 int main(int argc , char *argv []){

9 pthread_t *thread;

10 long i, *return_value;

11
12 thread = (pthread_t *) malloc(num_threads*sizeof(pthread_t));

13 return_value =(long *) malloc(num_threads*sizeof(long));

14
15 for (i=0; i<num_threads; i++)

16 pthread_create (& thread[i],NULL ,& child_thread ,(void *)i);

17
18 for (i=0; i<num_threads ; i++) {

19 pthread_join(thread[i], (void **)& return_value[i]);

20 printf("input = %ld output =%ld \n",i, return_value[i]);

21 }

22 }

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 18 / 24

Program 4 : summation1 pthreads.c

1 void* child_thread(void * param){

2 long id,i,p,y;

3 id = (long)param;

4 p = n/num_threads;

5 y = 0;

6 for(i=id*p; i <(id+1)*p; i++)

7 y+=x[i];

8 return (void *)y;

9 }

10
11 int main(int argc , char *argv []){

12 pthread_t *thread;

13 long i,sum ,y;

14
15 thread = (pthread_t *) malloc(num_threads*sizeof(pthread_t));

16 x=(long *) malloc(n*sizeof(long));

17
18 for(i=0; i < n; i++)

19 x[i] = (long) i;

20
21 for (i=0; i<num_threads; i++)

22 pthread_create (& thread[i],0,&child_thread ,(void *)i);

23
24 sum = 0;

25 for (i=0; i<num_threads ; i++) {

26 pthread_join(thread[i], (void **)&y);

27 sum+=y;

28 }

29 printf("sum=%ld\n",sum);

30 }

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 19 / 24

Program 5 : summation2 pthreads.c

1 float *x;

2 /* ---*/

3 typedef struct{

4 int thread_id; int chunk; float data;

5 } thread_data;

6 /* ---*/

7 void *tfunc(void *arg){

8 thread_data *p = (thread_data *)arg;

9 long id = p-> thread_id;

10 int i, np = p-> chunk; float y = 0.0;

11 for(i=id*np; i <(id+1)*np; i++)

12 y+=x[i];

13
14 p->data = y;

15 // this is how the pointer to a structure is feed.

16 return (void *)p;

17 }

18 /* ---*/

19 int main(int argc , char *argv []){

20 pthread_t *t; thread_data *q;

21 np = (int) (num_points/num_threads);

22 /* ---- Create threads -----*/

23 for(i=0; i < num_threads; i++){

24 q[i]. thread_id = i; q[i]. chunk = np;

25 pthread_create (&t[i],NULL ,tfunc ,(void *)(q+i));

26 }

27 /* ------Join threads -------*/

28 for(sum=0.0,i=0; i < num_threads; i++){

29 pthread_join(t[i], (void **)&q[i]);

30 sum+=q[i].data;

31 }

32 }
Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 20 / 24

Program 6 : mutex1 pthreads.c

1
2 pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

3 int counter = 0

4
5 void *functionC (){

6 pthread_mutex_lock (& mutex1);

7 counter ++;

8 printf("Counter value: %d\n",counter);

9 pthread_mutex_unlock(&mutex1);

10 }

11
12 int main(int argc , char *argv []){

13
14
15 for(l=0; l < num_threads; l++)

16 pthread_create (& thread[l],NULL ,&functionC ,NULL);

17
18 for(l=0; l < num_threads; l++)

19 pthread_join(thread[l],NULL);

20
21 }

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 21 / 24

All programs

1 hello world1 pthreads.c

2 hello world2 pthreads.c

3 return pthreads.c

4 summation1 pthreads.c

5 summation2 pthreads.c

6 mutex1 pthreads.c

7 mutex2 pthreads.c

8 create fork.c

9 create pthreads.c

10 stack pthreads.c

11 scalar prod pthreads.c

12 compute pi pthreads.c

13 nbody kernal pthreads.c

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 22 / 24

Exercise

1 Compute the value of π by numerically integrating 1/(1 + x2)
between limits [0 − 1] in parallel using pthreads . You need to split
the limit of integration and send the sub-limits to threads which
return the answer for that limit.

2 Write a parallel program using pthreads for finding the number of
prime number up to some number n and compare the performance
with the OpenMP program for the same (you can modify the OpenMP

program which was provided in OpenMP session).

3 Write a parallel program for matrix multiplication using pthreads .

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 23 / 24

Thank You !

Jayanti Prasad (IUCAA-Pune) Programming with pthreads February 01, 2012 24 / 24

	Introduction
	Processes
	Threads

	Pthreads
	Creating and joining threads
	Creating threads
	Joing threads
	Race Condition
	Mutex locks

	Examples
	Program 1
	Program 2
	Program 3
	Program 4
	Program 5
	Program 6

	Problems

