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Preface

There is a need for a comprehensive, advanced level, text book dealing with all
aspects of gravity, written for the physicist in a contemporary style. The itali-
cized adjectives in the above sentence are the key: most of the existing books in
the market are either outdated in emphasis, too mathematical for a physicist, not
comprehensive or written at an elementary level. (For example, the two unique
books — L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields and C.W.
Misner, K.S. Thorne and J.A. Wheeler, Gravitation — which I consider to be mas-
terpieces in this subject are more than three decades old and are out of date in their
emphasis.) The current book is expected to fill this niche and I hope it becomes
a standard reference in this field. Some of the features of this book including the
summary of chapters are given below.

As the title implies, this book covers both Foundations (in part I; ten chapters)
and Frontiers (in part II; six chapters) of general relativity so as to cater to the needs
of different segments of readership. The Foundations acquaint the readers with the
basics of general relativity while the topics in Frontiers allow one to “mix-and-
match”, depending on interest and inclination. This modular structure of the book
will allow it to be adapted for different types of course work.

For a specialist researcher or a student of gravity, this book provides a compre-
hensive coverage of all the contemporary topics, some of which are discussed in a
text book for the first time, as far as I know. The cognoscenti will find that there
is a fair amount of originality in the discussion (and in the Exercises) of even the
conventional topics.

While the book is quite comprehensive, it also has a structure which will make
it accessible to a wide target audience. Researchers and teachers interested in theo-
retical physics, general relativity, relativistic astrophysics and cosmology will find
it useful for their research and adaptable for their course requirements. (The sec-
tion How to use this book, just after the preface, gives more details of this aspect.)
The discussion is presented in a style suitable for physicists, ensuring that it caters
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Preface xix

to the current interest in gravity among physicists working in related areas. The
large number (more than 225) of reasonably nontrivial Exercises makes it ideal for
self-study.

Another unique feature of this book is a set of Projects at the end of selected
chapters. The Projects are advanced level exercises presented with helpful hints
to show the reader a direction of attack. Several of them are based on research
literature dealing with key open issues in different areas. These will act as a bridge
for students to cross over from text book material to real life research. Graduate
students and grad school teachers will find the exercises and projects extremely
useful. Advanced undergraduate students with a flair for theoretical physics will
also be able to use parts of this book, especially in combination with more elemen-
tary books.

Here is a brief description of the chapters of the book and their inter-relationship:
Chapters 1 and 2 of this book are somewhat unique and serve an important pur-

pose which I would like to explain. A student learning general relativity often finds
that she has to simultaneously cope with (i) conceptual and mathematical issues
which arise from the spacetime being curved and (ii) technical issues and concepts
which are essentially special relativistic but were never emphasized adequately in
a special relativity course! For example, manipulation of 4-dimensional integrals
or the concept and properties of the energy-momentum tensor have nothing to do
with general relativity a priori — but are usually not covered in depth in conven-
tional special relativity courses. The first two chapters give the student a rigorous
training in 4-dimensional techniques in flat spacetime so that she can concentrate
on issues which are genuinely general relativistic later on. These chapters can also
usefully serve as modular course material for a short course on advanced special
relativity or classical field theory.

Chapter 1 introduces special relativity using four-vectors and the action principle
right from the outset. Chapter 2 introduces the electromagnetic field through the
four-vector formalism. I expect the student to have done a standard course in clas-
sical mechanics and electromagnetic theory but I do not assume familiarity with
the relativistic (four-vector) notation. Several topics which are needed later in gen-
eral relativity are introduced in these two chapters in order to familiarize the reader
early on. Examples include the use of the relativistic Hamilton-Jacobi equation,
precession of Coulomb orbits, dynamics of the electromagnetic field obtained from
an action principle, derivation of the field of an arbitrarily moving charged particle,
radiation reaction, etc. Chapter 2 also serves as a launch pad for discussing spin-0
and spin-2 interactions, using electromagnetism as a familiar example.

Chapter 3 attempts to put together special relativity and gravity and explains,
in clear and precise terms, why it does not lead to a consistent picture. Most text
books I know (except MTW ) do not explain the issues involved clearly and with
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adequate detail. For example, this chapter contains a detailed discussion of the
spin-2 tensor field which is not available in textbooks. It is important for a stu-
dent to realize that the description of gravity in terms of curvature of spacetime is
inevitable and natural. This chapter will also lay the foundation for the descrip-
tion of the spin-2 tensor field hab which will play an important role in the study of
gravitational waves and cosmological perturbation theory later on.

Having convinced the reader that gravity is related to spacetime geometry, Chap-
ter 4 begins with the description of general relativity by introducing the metric
tensor and extending the ideas of four-vectors, tensors etc. to a non-trivial back-
ground. There are two points that I would like to highlight about this chapter:
First, I have introduced every concept using a physical principle rather than in the
abstract language of differential geometry. For example, direct variation of the line
interval leads to the geodesic equation through which one can motivate the no-
tion of Christoffel symbols, covariant derivative etc. in a simple manner. During
the courses I have taught over years, students have found this approach attractive
and simpler to grasp. Second, I find that students sometimes confuse issues which
arise when curvilinear coordinates are used in flat spacetime with those related to
genuine curvature. This chapter clarifies such issues.

Chapter 5 introduces the concept of curvature tensor from three different per-
spectives and describes its properties. It then moves on to provide a complete
description of electrodynamics, statistical mechanics, thermodynamics and wave
propagation in curved spacetime including the Raychaudhuri equation and the fo-
cussing theorem.

Chapter 6 starts with a clear and coherent derivation of Einstein’s field equations
from an action principle. I have provided a careful discussion of the surface term
in the Einstein-Hilbert action (again not usually found in textbooks) in a manner
which is quite general and turns out to be useful in the discussion of Lanczos-
Lovelock models in Chapter 15. I then proceed to discuss the general structure of
the field equations, the energy-momentum pseudo-tensor for gravity and the weak
field limit of gravity.

After developing the formalism in the first six chapters, I apply it to discuss four
key applications of general relativity — spherically symmetric spacetimes, black
hole physics, gravitational waves and cosmology — in the next four chapters. (The
only other key topic I have omitted, due to lack of space, is the physics of compact
stellar remnants.)

Chapter 7 deals with the simplest class of exact solutions to Einstein’s equa-
tions, which are the ones with spherical symmetry. The chapter also discusses the
orbits of particles and photons in these spacetimes and the tests of general relativ-
ity. These are used in Chapter 8 which covers several aspects of black hole physics,
concentrating mostly on the Schwarzschild and Kerr black holes. It also introduces
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the important concepts like the maximal extension of a manifold, Penrose-Carter
diagrams and the geometrical description of horizons as null surfaces. A derivation
of the zeroth law of black hole mechanics and illustrations of the first and second
laws are also provided. The material developed here forms the backdrop for the
discussions in Chapters 13, 15 and 16.

Chapter 9 takes up one of the key new phenomena that arise in general relativity
viz. the existence of solutions to Einstein’s equations which represent disturbances
in the spacetime that propagate at the speed of light. A careful discussion of gauge
invariance and coordinate conditions in the description of gravitational waves is
provided. I also make explicit contact with similar phenomena in the case of elec-
tromagnetic radiation in order to help the reader to understand the concepts better.
A detailed discussion of the binary pulsar is included and a Project at the end of
the chapter explores the nuances of the post-Newtonian approximation.

Chapter 10 applies general relativity to study cosmology and the evolution of
the universe. Given the prominence cosmology enjoys in current research and the
fact that this interest will persist in future, it is important that all general relativists
are acquainted with cosmology at the same level of detail as, for example, with the
Schwarzschild metric. This is the motivation for Chapter 10 as well as Chapter 13
(which deals with general relativistic perturbation theory). The emphasis here will
be mostly on the geometrical aspects of the universe rather than on physical cos-
mology for which several other excellent text books (e.g., mine!) exist. However,
in order to provide a complete picture and to appreciate the interplay between the-
ory and observation, it is necessary to discuss certain aspects of the evolutionary
history of the universe — which is done to the extent needed.

The second part of the book (“Frontiers”; chapter 11-16) discusses six separate
topics which are reasonably independent of each other (though not completely).
While a student or researcher specializing in gravitation should study all of them,
others could choose the topics based on their interest after covering Part I.

Chapter 11 introduces the language of differential forms and exterior calculus
and translates many of the results of the previous chapters into the language of
forms. It also describes briefly the structure of gauge theories to illustrate the gen-
erality of the formalism. The emphasis is in developing the key concepts rapidly
and connecting it up with the more familiar language used in the earlier chapters,
rather than in maintaining mathematical rigour.

Chapter 12 describes the (1+3) decomposition of general relativity and its Hamil-
tonian structure. I provide a derivation of Gauss-Codazzi equations and Einstein’s
equations in the (1+3) form. The connection between the surface term in the
Einstein-Hilbert action and the extrinsic curvature of the boundary is also spelt
out in detail. Other topics include the derivation of junction conditions which are
used later in Chapter 15 while discussing the brane world cosmologies.
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Chapter 13 describes general relativistic linear perturbation theory in the context
of cosmology. This subject has acquired major significance, thanks to the observa-
tional connection it makes with cosmic microwave background radiation. In view
of this, I have also included a brief discussion of the application of perturbation
theory in deriving the temperature anisotropies of the background radiation.

Chapter 14 describes some interesting results which arise when one studies stan-
dard quantum field theory in a background spacetime with a nontrivial metric.
Though the discussion is reasonably self-contained, some familiarity with sim-
ple ideas of quantum theory of free fields will be helpful. The key result which I
focus on is the intriguing connection between thermodynamics and horizons. This
connection can be viewed from very different perspectives not all of which can
rigorously be proved to be equivalent to one another. In view of the importance
of this result, most of this chapter concentrates on obtaining this result using dif-
ferent techniques and interpreting it physically. In the latter part of the chapter, I
have added a discussion of quantum field theory in the Friedmann universe and the
generation of perturbations during the inflationary phase of the universe.

Chapter 15 discusses a few selected topics in the study of gravity in dimensions
other than D = 4. I have kept the discussion of models in D < 4 quite brief
and have spent more time on the D > 4 case. In this context — after providing
a brief, but adequate, discussion of brane world models which are enjoying some
popularity currently — I describe the structure of Lanczos-Lovelock models in
detail. These models share several intriguing features with Einstein’s theory and
constitute a natural generalization of Einstein’s theory to higher dimensions. I
hope this chapter will fill the need, often felt by students working in this area, for a
textbook discussion of Lanczos-Lovelock models.

The last chapter provides a perspective on gravity as an emergent phenomenon.
(Obviously, this chapter shows my personal bias but I am sure that is acceptable
in the last chapter!) I have tried to put together several peculiar features in the
standard description of gravity and emphasize certain ideas which the reader might
find fascinating and intriguing.

Because of the highly pedagogical nature of the material covered in this text-
book, I have not given detailed references to original literature except on rare occa-
sions when a particular derivation is not available in the standard text books. The
annotated list of Notes given at the end of the book cites several other text books
which I found useful. Some of these books contain extensive bibliographies and
references to original literature. The selection of books and references cited here
clearly reflects the bias of the author and I apologize to anyone who feels their
work or contribution has been overlooked.

Discussions with several people, far too numerous to name individually, have
helped me in writing this book. Here I shall confine myself to those who provided
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detailed comments on earlier drafts of the manuscript. Donald Lynden-Bell and
Aseem Paranjape provided extensive and very detailed comments on most of the
chapters and I am very thankful to them. I also thank A. Das, S. Dhurandar, P.P.
Divakaran, J. Ehlers, J.F.R. Ellis, Rajesh Gopakumar, N. Kumar, N. Mukunda, J. V.
Narlikar, Maulik Parikh, T.R. Seshadri and L. Sriramkumar for detailed comments
on selected chapters.

Vincent Higgs (CUP) took up my proposal to write this book with enthusiasm.
The processing of this volume was handled by Laura Clark (CUP) and I thank her
for the effort she has put in.

This project would not have been possible without the dedicated support from
Vasanthi Padmanabhan, who not only did the entire TEXing and formatting but
also produced most of the figures. I thank her for her help. It is a pleasure to
acknowledge the library and other research facilities available at IUCAA, which
were useful in this task.

T.Padmanabhan



How to use this book

This book can be adapted by readers with varying backgrounds and requirements
as well as by teachers handling different courses. The material is presented in a
fairly modular fashion and I describe below different sub-units can be combined
for possible courses or for self-study.

1 Advanced Special Relativity
Chapter 1 along with parts of Chapter 2 (especially sections 2.2, 2.5, 2.6,
2.10) can form a course in advanced special relativity. No previous famil-
iarity with four-vector notation (in the description of relativistic mechanics
or electrodynamics) is required.

2 Classical Field Theory
Parts of Chapter 1 along with Chapter 2 and sections 3.2, 3.3 will give a
comprehensive exposure to classical field theory. This will require familiar-
ity with special relativity using four-vector notation which can be acquired
from specific sections of Chapter 1.

3 Introductory General Relativity
Assuming familiarity with special relativity, a basic course in GR can be
structured using the following material: Sections 3.5, Chapter 4 [except
sections 4.8, 4.9], Chapter 5 [except sections 5.2.3, 5.3.3, 5.4.4, 5.5, 5.6],
sections 6.2.5, 6.4.1, 7.2.1, 7.4.1, 7.4.2, 7.5. This can be supplemented with
selected topics in Chapters 8 and 9.

4 Relativistic Cosmology
Chapter 10 [except 10.6, 10.7] along with Chapter 13 and parts of section
14.7 and 14.8 will constitute a course in relativistic cosmology and pertur-
bation theory from a contemporary point of view.

5 Quantum Field Theory in Curved Spacetime
Parts of Chapter 8 [especially sections 8.2, 8.3, 8.7] and Chapter 14 will
constitute a first course in this subject. It will assume familiarity with GR
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but not with detailed properties of black holes or quantum field theory. Parts
of Chapter 2 can supplement this course.

6 Applied General Relativity
For students who have already done a first course in GR, Chapters 6, 8, 9
and 12 (with parts of Chapter 7 not covered in the first course) will provide
a description of advanced topics in GR.

Exercises and Projects:
None of the exercises in this book are trivial or of simple “plug-in” type. Some

of them involve extending the concepts developed in the text or understanding them
from a different perspective; others require detailed application of the material in-
troduced in the chapter. There are more than 225 exercises and it is strongly rec-
ommended that the reader attempts as many as possible. Some of the nontrivial
exercises contain hint and short answers.

The Projects are more advanced exercises linking to original literature. It will
often be necessary to study additional references in order to comprehensively grasp
or answer the questions raised in the projects. Many of them are open-ended (and
could even lead to publishable results) but all of them are presented in a graded
manner so that a serious student will be able to complete most part of any project.
They are included so as to provide a bridge for students to cross over from the
textbook material to original research and should be approached in this light.

Notations and Conventions:
Throughout the book, the Latin indices a, b, ..i, j.. etc run over 0, 1, 2, 3 with

the 0-index denoting the time dimension and (1, 2, 3) denoting the standard space
dimensions. The Greek indices, α, β, .. etc. will run over 1,2,3. Except when
indicated otherwise, the units are chosen with c = 1.

We will use the vector notation for both three-vectors and four-vectors by using
different fonts. The four-momentum, for example, will be denoted by p while the
three-momentum will be denoted by p.

The signature is (-, +, +, +) and curvature tensor is defined by the convention
Ra

bcd
≡ ∂cΓabd − .... with Rbd = Rabad.

The symbol ≡ is used to indicate that the equation defines a new variable or
notation.


